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the extensive surface area of the pores, may embrace significant fractions of the

fluid. The mean temperature fluctuation in the pores determines the sound speed

\lthough the phase velocity of a wave in a porous naterial is actually substantially

less than the sound speed, the following discussior, is couched in terms of the sound

speed because it is the most familiar name for the quantity. Appendix A gives a

detailed discussion of the effect on sound speed of heat conduction between the

fibers and a laminar flow. For the present it is sufficient to summarize the results

of -\ppendix \.

The sound speed takes a frequency dependent value somewhere between

the extremes of the adiabatic value c= y/-= /RTo and the isothermal value

c.,po-- RT 0 o. At high frequency, because the boundary layers around the fibers

are relatively thin, most of the air is in an isentropic state. The isentropic value of

the sound speed is therefore appropriate. At low frequencies the thermal boundary

layers fill the pores almost conpletely so that the air temperature is constrained to S
the ambient value T . In this range the sound speed value is roughly that for an

0

isothermal gas. At sub-audio frequencies, however, the quasi-static temperature

variation induced by the acoustic flow overcomes the heat capacity of the frame

and drives the temperature of the material as a whole. Since the air and the frame

are in thermal equilibrium, the adiabdtic sound speed is once more appropriate.

Figure 2-2 shows the approximate variationr of sound speed with frequency for

KevlarR29 of porosity 0.94, 0.96, and C.9S.

The sound speed calculation is baised on knowledge of the temperature

distribution around an iridividual fiue! . lwr nlrt ,rr mm turn depends on the

assumption that adjacent fibers do not interact thermally; that , the boundary

14 0



where w is the decoupling frequency and pes is the effective structural density S

defined by Lambert. Interpretation of Eq. (2.11) is straightforward. The resistivity

factor represents viscous coupling which drags the frame with the flow while the

factor pes represents inertia which inhibits frame motion. For frequencies above W,

the inertia dominates and the frame tends to remain motionless.

Kevlar A* 29 was used extensively in the experimental phase of this inves-

tigation. In the porosity range 0.94-0.98 the decoupling frequency is between 60 and S

85 Hz. The lowest fundamental frequency used in our experiments was considerably

higher, namely 500 Hz. Thus, we have assumed the frame to be rigid.

4. Constitutive Relation

Heat transfer between the air and the frame causes the thermodynamic

state of the entrapped air to depart from being adiabatic. We are primarily

interested in the proper relationship of the pressure and density which, as the ideal

gas law

p =pRT (2.12)

shows, is determined by the temperature fluctuations in the gas. The

acoustic pressure p and acoustic density p are related to the total pressure p and

total density p as p=p0 +p and k_- p0 + p where Po and p0 are ambient values. The

total temperature is similarly expressed as T=T +T and R is the gas constant. The

frame, by virtue of its considerable heat capacity, tends to remain at the ambient

temperature TO while the air temperature fluctuates with the acoustic signal. A S

thermal boundary layer forms around the frame. In the boundary layer the

temperature fluctuations decay to near zero at the frame surfaces. The boundary

layer thickness varies as the inverse square root of the frequency and, because of 3

13



dc flow resistivity data. Although the addition of the sgn(u) term seems redundant

for dc flows, its omission led Kuntz to inaccurate theoretical predictions of

nonlinear behavior for acoustic signals.

Other expressions exist which fit the data well and satisfy the pressure p

gradient rec uiiernent. ,,e exdinple iL.
2

r=r I +r 3 u 2 (2.10)
I

Equation (2.10), which we shall refer to as the "quadratic model" rather than the

"sgn(u) model," is more attractive for analytical study than Eq. (2.9), but does not

bring us any closer to closed form soluitions of the wave equation. Furthermore,

predicted behavior based on this model does not differ substantially from that

predicted for the sgn(u) model (see again Fig. 2-1). Although we have carried out

parallel theoretical developments using the quadratic model, the results are

somewhat redundant and are riot covered here in detail. The quadratic model can be

used to obtain a perturbation solution. Anaiytical expressions for propagation of

intense tones and numerical results for propagation of more complex finite-

amplitude signals subject to quadratic resistivity are given in Appendix B. The

sgn(u) model, however, receives the bulk of the attention in the remainder of this

work.

3. Frame Rijidity

The materiAl frame is set in rc, tion 5v the sound field but under certain

conditions is nearly stationary and can be considered rigid. Lambert and Zwikker

10
and Kosten determined that force, coupling the frame and gas motion are

insignificant if

WoI ; rl/Pe ,(2.11)

12
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Measured data indicate that the resistivity depends on the flow velocity; a

mathematical expression of the resistivity is sought which is appropriate for both ac

and dc flows. Static flow resistivity data (see Fig. 2-1) seem at first glance to

indicate that the resistivity is of the form

r r +r 2 u , (2.6)

in which case

2 327
-dp/dx = rlu + r2 u . (2.7)

Closer examination, however, reveals the implausibility of using Eq. (2.7) for an ac

signal: it suggests that the nonlinear contribution to the pressure gradient is

positive regardless of the instantaneous direction of flow. If the discrepancy is to

be remedied, the pressure gradient must not contain any even functions of u. The

simplest improvement is to affix sgn(u) to the r2 term in Eq. (2.7). The pressure

gradient then becomes

2
P = r u + r2 u sgn(u) ' (2.8)

from which it follows that the resistivity has the form 5

r=rr +r 2 usgn(u) , (2.9)

where u sgn(u) is the instantaneous speed of the flow. The coefficient

r I is referred to as the linear resistivity because it plays a large part in determining

the small-signal propagation effects. Similarly, the nonlinear resistivity is so called

because it causes nonlinear behavior. Equation (2.9) is still compatible with the

A detailed discussion of the data is given in Chapter 4. The large number of trials

at small flow velocities was taken to find an accurate value of r 1 "

10
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aaIzo jfD(x,y;zo) dx dy . (2.3)az0area ff

The average of the local value over all possible planes is the quantity<Qa>,

<Sja > = length area)) (x,y~z o ) dx dy dz 0  (2.4)

Note that Eq. (2.4) reduces to Eq. (2.1), so that in general

The percent open area and the porosity must be equal because the aggregate open

area of all infinitesimally thin slices defines the total open volume. This result is

obtained regardless of the material geometry.

2. Resistivity

Viscous drag causes the material to resist the passage of an acoustic

wave. The resistance per unit length is called the resistivity r, and is defined for a

one-dimensional flow as follows.

dp/dx -ru , (2.5)

where dp/dx is the pressure gradient parallel to the flow and u the flow

velocity.

Since in general the details of the flow cannot be analyzed, the resistivity

cannot be calculated explicitly and must therefore be measured directly. A dc flow

test is the most straightforward way of measuring the resistivity. The fact that the

dc flow resistivity also applies to oscillatory flows is not intuitively obvious, but

2Zorumski and Parrot have shown that the ac and dc resistivities are indeed

equivalent over a wide range of particle velocities. It is therefore possible to

determine the ac resistivity of the medium by measuring the dc resistivity.

9
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B. Modeling

Porous materials in general have geometrically disorganized structures;

the frame elements are arranged helter-skelter in near-random fashion. This fact

makes detailed analysis of the hydrodynamic field virtually impossible. We

therefore prefer to take a macroscopic viewpoint in which the summed effect of

local flows determines the material properties.

S

1. Porosity

The porosity is defined as the fraction of the material volume which is

filled with air. We have devised an abstract function D(xy,z) to describe the

structure of a porous material; the function is merely a convenient mathematical

construct and need not be directly measurable. The value of D is 0 at a point

occupied by a structural element and I otherwise. It therefore follows that the

porosity is simply the value of D averaged over a volume substantially larger than

the mean pore size:

-ifffD(x,y,z) dx dy dz. (2.1) 

The sample is assumed to be homogeneous and the porosity stationary

throughout the sample. In practice, the porosity is determined by empirical means:

the known densities of a sample ps, the frame pf, and the air trapped within PO

combine in the relation

2 = (Pf - Ps)/(Pf - po) . (2.2)

While the porosity defines the fraction of volume occupied by air, the

percent open area (a defines the unobstructed fraction of a representative plane

through which the flow passes. First, the local percent area £2 a for a plane located

at z=z 0 is

00
8J



CHAPTER 2

THEORY AND MODELING

A. Introduction

The theories of sound propagation which pertain most directly to the

present investigation were reviewed in Chapter 1. In Chapter 2 we develop a simple

model for studying propagation of high intensity sound through air-filled bulk porous

absorbers. Some of the assumptions made have been used previously by other

authors, namely,

1) the frame is assumed rigid, 1 1 1 2

2) dc flow resistivity can be substituted for the ac value through-

out, 2 , 1 3 and

3) isothermal sound speed is appropriate for all frequencies of

interest.

The fourth assumption,

4) hydrodynamic nonlinearities are small relative to the resistive

nonlinearity,

is unique to the present work.

In Section B the concepts of porosity and resistivity are defined. Assump-

tions used in generating of the model are examined in detail. The continuity and

momentum conservation equations, derived in Section C, are combined in Section D

to produce a wave equation and the corresponding Helmholtz equation.

Because the process has been assumed isothermal, the energy equation is not needed

in the derivation of the wave equation and is therefore not discussed here.

PREVIOUS PAGE
7 ~IS BLAN K
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An outline of the current investigation is as follows. Chapter 2 begins

with a section on material modeling. Equations of motion are then derived, which 0

lead to a nonlinear wave equation and an infinite set of inhomogeneous Helmholtz

equations. The solution of the Helmholtz equations and the predictions which can be

made froa, thein arc gIci in -hapter 3. The chapter is divided into two sections: S

(1) propagation of low amplitude waves and (2) finite-amplitude effects. The second

section is further divided into an analysis of the behavior of the fundamental and a

4 study of the growth and decay of the harmonics. Chapter 4 is devoted to

experiments. Discussions of the experimental apparatus and procedures are followed

by a detailed comparison between theoretical predictions and measurements.

Observed phenomena include excess attenuation of the fundamental, phase speed (of 0

the fundamental) which decreases with amplitude, and a cubic distortion pattern in

the harmonics. Hysteresis in the amplitude dependent phase speed seems to imply

the presence of a nonlinear bistability. Chapter 5 is a summary and conclusion of

the first four chapters of the study, which constitute the thesis work. Chapter 6

was added after the thesis and presents an application of the theory to the acoustics

of lined ducts. The vector wave equation is derived, and a frequency domain

perturbation in the velocity potential is set up to solve the problems of reflection

from a porous half-space and propagation in a lined duct. Appendix A gives a

discussion of thermal effects on propagation in porous materials. A discussion of
2

the alternative use of a resistivity model rzr I+r3 u is given in Appendix B.

Appendix C contains the listing for and a short description of the computer program

which calculates the numerical solutions.

'.I
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g There have been other investigations of the nonlinear properties of porous

materials, but most are based on empirical observation of nonlinearly induced

phenomena, with no clue about the relevant physical processes. Because they do not

reveal the source of the nonlinearity, these studies have been of little value to the

present work.

C. Present Work

In the present investigation we seek a simple theory which quantifies the

effects of amplitude dependent resistivity. In particular, we seek to explain and

rectify the discrepancies between Kuntz's theory and experiment. The theory is

based on the following model of the porous material: the material is rigid,

incompressible and homogeneous, and it has only two important properties, porosity

S1 and resistivity r. Knowledge of the microscopic structural details of the material

is unnecessary. The porosity and resistivity are determined by direct measurement.

The resistivity is shown to be the following function of velocity u: r=r +r2 usgn(u).

The effects of hydrodynamic nonlinearities, e.g., shock formation, are neglected,

and sound propagation through the material is assumed to be isothermal. This model

leads to a nonlinear wave equation, the solutions of which agree favorably with

experimental observations.
0

Two of Kuntz's experiments have been repeated (with minor modifi-

cations): propagation of complex periodic signals, and dc flow resistivity measure-

ments. Measurements were performed on batted Kevlar 29 in the 400 to 6200 Hz

frequency range for small-signal waves, and 500 to 1500 Hz for finite-amplitude

waves up to 165 dB source sound pressure level (SPL). The porosity of the samples

ranged from Q =0.94 to 0.98.

4
* 0t
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for Lambert's hypothesis is offered in Chapter 2. His work increased confidence in

subsequent theories in which frame motion was neglected altogether. Kuhl and
)' Meyer12

Meyer were the first to introduce the following two crucial assumptions: (1) the

dc flow resistance can be used directly in the momentum equation for acoustic

signals, and (2) frame motion is negligible. Their theory provides the foundation for

the present study.

Hersh and Walker 1 3 elaborated on Kuhl and Meyer's theory. They used

hydrodynamic flow theory to formulate empirical relations between viscosity,

porosity, fiber diameter, and resistivity. Heat transfer effects were also accounted

for. 
14

Other influential linear theories (see, for example, Biot 15 and Lambert 1 6 )

are comprehensive and generally quite useful. We are not able, however, to derive

any benefit from them because their inherent complexity precludes extension for

nonlinear behavior.

B. High-Amplitude Behavior

2Zorumski and Parrot combined theoretical work with experimental

observation in their study of the amplitude dependent impedance of thin porous

sheets. Most important, they showed that the ac resistivity is not only independent

of frequency, but that it closely approximates the dc flow resistivity over a wide

range of particle velocities as well. The equivalence of the ac and dc resistivity

apparently proves the first assumption of Kuhl and Meyer.

Kuntz's investigation builds on the best aspects of the contributions of

Kuhl and Meyer and Zorumski and Parrot. However, a single error in Kuntz's

expression for the nonlinear resistivity caused his theoretical predictions to differ

markedly from his experimental observations.

3
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The theoretical work has two hallmarks: (1) the theoretical model is very

simple, and (2) the analysis is done in the frequency domain. The result is a

relatively uncomplicated theory and predictions that compare favorably with

experimental data over a wide range of intensities, frequencies, and input signals.

Since the number of investigations dnd treatments of porous material

problems is vast, it is useful to show the relationship of the present work to that

*A which has gone before. Because a thorough review of the literature has already

been given by Kuntz, we offer an abbreviated review to establish a succession of

reference points.

0 A. Small-Signal Theory

Rayleigh3 was apparently the first to correlate sound absorption in

porous materials with viscous and thermal losses occurring across the substantial

internal surface area of the material. He characterized the material as a solid

riddled with a multitude of narrow tubular channels. Rayleigh combined this model

4with the work of Kirchhoff who had investigated the effect of viscosity and heat

conduction on sound traveling in a narrow tube, to create the first modern theory of

sound propagation in porous materials.

Many investigations which followed were based on Rayleigh's pioneering

work.5,6,7,8,9  The most prominent and thorough work along this line was

performed by Zwikker and Kosten. 1 0 They took into account fiber motion, and also

introduced the concept of the structure factor.

6 110
Lambert discovered that above a certain frequency the gas motion and

frame motion are indeed decoupled. The decoupling frequency depends on the

material. For Kevlar"H29, which figures heavily in the experimental phase of this

work, the decoupling frequency is below 85 Hz for porosities above Q =0.94. Support

2
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CHAPTER I

INTRODUCTION

Porous materials have proved useful as sound absorbers in high intensity

environments, such as jet engine inlet ducts, vhere sound levels routinely exceed

140 dB. At this level most porous materials exhibit amplitude dependent properties,
.. . 1,2

i.e., they act nonlinearly. Although it is known that the nonlinearity significantly

alters the efficiency of the absorber, the physical processes which cause the

nonlinearity have not been well understood. Moreover, the precise effects of

nonlinearity are not well documented. There is thus a need to understand more fully

the high amplitude behavior of bulk porous materials.

Propagation of sound in porous materials is fundamentally different from

that in an ordinary fluid. The acoustic flow encounters frictional resistance at each

of the many gas/fiber interfaces. As a result the sound wave is attenuated, the

phase speed reduced, and the impedance increased. The severity of these effects

depends on frequency. For example, low frequency signals pass through the material

more by diffusion than by propagation: attenuation and phase speed are both

proportional to v?. At high frequency, on the other hand, the attenuation and phase

speed reach constant values. Furthermore, because the frictional resistance

increases with flow velocity, the acoustical properties also depend on amplitude.

The combination of nonlinearity and diffusion causes some unusual and interesting

behavior; it also makes the problem difficult to solve.

The present study covers high intensity sound propagation in air-filled

fibrous bulk porous materials. The investigation is both theoretical and experi-

mental.

0



layers must not overlap. If they do overlap the actual temperature distribution

cannot be determined, but is expected to yield a sound speed that is more isothermal

than Fig. 2-2 would indicate. The boundary layer interaction turns out to be signifi-

cant at surprisingly high frequencies. The vertical lines which intersect the sound U

speed curves represent the frequencies below which the sound speed calculation

cannot be trusted. A detailed discussion of how these frequencies are determined is

given in Appendix A. •

The results shown in Fig. 2-2 are based on the assumption of laminar flow

conditions. The high particle velocities of intense waves, however, render the flow

highly turbulent. Carman 1 7 has determined that the onset of turbulent flow in

porous materials occurs when the modified Reynold's number

R u(2.13)
Rm VS

reaches a value in excess of unity, where S=4(1-9l)/d is the surface area of the fibers

per unit volume, d the fiber diameter, and v is the kinematic viscosity. For

Kevlar)29 in porosities ranging from 0.98 to 0.94, the velocity at which turbulent

flow begins is 0.1 to 0.3 m/sec, respectively. The flow velocities used in our

experiments often exceed these values by as much as an order of magnitude: the

* assumption of laminar flow is clearly not applicable in these cases. Turbulent

mixing of the fluid has a significant effect on the sound speed because it greatly

improves the heat transfer between the air and the fibers. We therefore expect

conditions to be significantly closer to isothermal than would be predicted from a

laminar flow model. Since we are primarily interested in measurements at high

intensity in frequency ranges where the boundary layer interaction is significant, we

are justified in assuming the isothermal sound speed.

16 4
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5. Relative Importance of Hydrodynamic Nonlinearity •

Hydrodynamic nonlinear effects are extremely important for finite-

amplitude progressive waves in an open medium, but their influence on wave

propagation in porous materials is small. Many fine discussions of the physics of

intense sound propagation in air already exist; 1 8 " 9 '2 0 ' 2 ' we shall cover only those

points pertinent to the present discussion. An intense wave in an open medium

distorts because the propagation speed dx/dt varies over the waveform,

dxldt = co + 13u(X,")

where 3z(+I)/2 and y is the ratio of specific heats. The waveform distortion,*i "
which we shall call hydrodynamic distortion, is cumulative. An initially sinusoidal

wave tends to distort into a sawtooth wave, i.e., a periodic sequence of shock waves.

The shock formation distance S

x =1 //Ek
where E=U 0/C is the dimensionless wave amplitude and k =27rf /c is the wave

number, serves as a measure of the rate of distortio, . If x is large the distortion

builds up very slowly; the reverse is true if x is small. The shock formation distance

in our experiments ranged from about 1.5 m to 5.5 km. These values should be

compared with the characteristic length for the absorption,

x I/a.a

where a is the small-signal attenuation coefficient. Since values of xa for our

* experiments were between 2 and 9 cm, i.e., x>>Xa, the wave was completely

absorbed before hydrodynamic distortion had a chance to develop. Furthermore, the

effects of the nonlinear resistivity turn out to be much more severe than those for

hydrodynamic distortion (see Chapter 3). Our experimental conditions are expected

17



to be typical of those encountered in practical uses of Kevlar as a high intensity

sound absorber. We therefore assume the hydrodynamic nonlinearity to be negligible

relative to the resistive nonlinearity and neglect any second and higher order terms

not pertaining to the resistivity in the following derivation of the equations of

motion.

6. Structure Factor

A true one-dimensional flow in a porous material exists only as a

convenient fiction. In reality the flow is deflected by the frame in directions

perpendicular to its net direction of travel. Some of the force applied in the x

direction to a fluid particle is therefore wasted in the process of accelerating the

fluid around obstacles. This inefficiency causes the fluid to appear more dense than

it actually is. The effects of increased inertia are most notable at high frequency,

where they cause the phase speed and attenuation to be reduced.

Most studies of porous materials include factors to account for the extra

inertia. They are called by many names: structure factor, apparent density, 0

tortuosity, and others. Some of the theoretical discussions of the underlying physics

are quite elaborate. 1 0 ' 1 5' 2 2 Direct measurement of the structure factor is, how-

ever, not possible nor can one determine its value theoretically without considering

the microscopic structural details of the material. Furthermore, the dependence on

amplitude of the structure factor is not known. It seemed better to this author to

do without such an enigmatic parameter, lest in our desire to assign it a numerical

value we reduce it to a "fudge factor". We therefore choose to overlook the

structure factor in formulating the equations of motion, physical significance

* notwithstanding. •

18
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C. Equations of Motion

The foregoing discussion of the physics of acoustic flow in a porous

material demonstrates that the resistivity effects far outweigh those of frame

motion, frequency dependent sound speed, and hydrodynamic nonlinearity. The

latter effects are therefore neglected so that needless complication is eliminated.

The problem is thus reduced to a rather simple one: plane wave propagation through

a "fluid" with one easily definable property, namely amplitude-dependent resistivity.

The purpose of this section is to convert this physical understanding into equations

of motion.

A number of general comments and definitions must be made at the

outset. We are presently concerned with only one-dimensional aggregate flows.

Local perpendicular flow components are assumed to sum to zero over a given plane.
e

We define the control volume, depicted in Fig. 2-3, to be a differential section of

length "x and cross-sectional area A. The material within the volume is

homogeneous and has the same porosity throughout. Flow enters the volume at the

left side through the open area 12A and exits through the same area to the right.

Pressures exerted on the sides of the control volume act on the entire cross-

sectional area A, not just the open area. A resistive force due to viscous drag is

presumed to act throughout the volume, not just in the pores. The velocity, density,

and pressure are mean values across a given plane. The velocity and density are

averaged only within the pores.

1. Continuity Equation

The equation of continuity mathematically expresses the balance between

the rates of mass influx, efflux, and accumulation. At some instant in time the flow

carries a certain amount of mass into the control volume through the open area at a

19
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Stationary control volume for determination of the
conservation of mass relation for porous materials 14
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rate (pu)(A)Ix. Mass exits the volume at the rate (pu)(A)Ix + Ax * Since we expect

the mass to be conserved, the difference between these two rates represents a rate

of mass accumulation, PtS2AAx. The continuity equation may therefore be written

as

PtRAAx = puQAIx - puA x+A x  , (2.14)

The differential form of Eq. (2.14) is found by dividing by 2AAx and taking the limit

as Ax goes to zero:

Pt + (PU)x = 0 (2.15)

The porosity factor does not appear in this equation because the volume fraction in

which the mass accumulates is equivalent to the area fraction through which the

flow passes."

Nonlinear terms not pertaining to the resistivity are neglected on the

basis of the discussion in Section A.5 . Furthermore, we assume that there is no dc

flow through the sample. We can therefore reduce Eq. (2.15) to the familiar

linearized continuity equation

+ PU =0. (2.16)

2. Momentum Equation

The derivation of the momentum equation proceeds along similar lines.

An identical control volume (depicted in Fig. 2-4) is established, but this time the

momentum of the volume is considered. The rate of momentum accumulation

(Pu)tS2AAx is balanced by the net momentum influx to the volume and body and

surface forces acting on the control volume. Momentum enters the volume at the

Particle velocity at or within a rigid obstacle is, of course, zero.

21
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left at the rate (pu)uQAIx and exits to the right at the rate (pu)uQAlx+Ax . Pressure

exerted on the sides of the volume result in surface forces PAIx at the left side and

PAIx+Ax at the right. A body force due to viscous drag ruAAx acts throughout the

volume in opposition to the flow. Although the form of r(u) is already known, it has

been left in its general form for the moment.

The mathematical statement of conservation of momentum is

(Pu)t 2AAx = (pu)u A2Ix -(pu)u AR Ix+ x + RAI x-PA I x+ -ru AAx (2.17)

This equation is divided by AAx and take the limit as Ax goes to zero to find the

differential form

a(Pu)t + (puu)x + Px + ru = . (2.18)

Again dropping hydrodynamic nonlinear terms, we obtain

S2P 0 ut + Px + ru = . (2.19)

The porosity factor appears in Eq. (2.19) because the flow enters the

control volume through an area determined by the porosity while the pressure and

body force act on the entire surface and volume, respectively.

3. Pressure-Density Relation

We recall from Section B.4 that the gas within the pores is constrained to

the ambient temperature value T because of rapid convective heat transfer

between the air and the frame. Equation (2.12) therefore reduces to

p = pRT , (2.20) 0

where c.=JiR- is the isothermal sound speed.

23
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D. Wave Equation

In the previous sections the continuity, momentum, and constitutive

equations appropriate for high intensity sound propagation through rigid bulk porous

materials were derived. The wave equation is found by combining these three

relations. We first apply the differential operator c.2 /ax to the continuity

equation and 8/at to the momentum equation. Density and pressure terms cancel

via Eq. (2.20), and the wave equations is found to be

(ru)t
S2 u t- cu +-x .O (2.21)utt - xUxx

We adopt the sgn(u) model for the nonlinear component of r. Substitution

of Eq. (2.9) in Eq. (2.21) yields

2
2 r 1  r 2(u sqn u)t-c.u + -out + = 0 . (2.22)

00

It turns out that solutions of Eq. (2.22) are best sought in the frequency

domain. If the nonlinear term is ignored for the moment, we see that the behavior

implied by Eq. (2.22) is a combination of lossless plane wave propagation

utt = 0,Q t- c i Uxx 0

and a diffusion process

-u- u-c. 2 u -0.
rc 1 2 X

0P t i XX

For most cases of practical interest the diffusive behavior is dominant; that is, the

resistance term rut/P° is much larger than the Qu tt term. The diffusion equation

has wavelike solutions, but they are characterized by severe frequency dependent

attenuation and dispersion. In particular, no general time domain solutions like

? i "S
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g(x+ct) or f(x-ct) for incoming or outgoing waves, respectively, can be found. S

Functions corresponding to incoming and outgoing waves are, however, identifiable

in the frequency domain. It is therefore advantageous to transform Eq. (2.22) into

its frequency domain counterpart, the Helmholtz equation.

Before tranfoi;ning L. (2.22) we find it convenient to rewrite the

equation in nondimensional form, vis.,

v -+RV. + 2(v2 sgnv) = 0 ,(2.23)v.r + r-2

where

v u/c i , R1 = r I/QPoo,

r7 Wot , R 2 
= 2ci/h2pow o

X coX/c i s

and W is a characteristic frequency, such as the fundamental frequency of the

incident acoustic wave.

2. Helmholtz Equation

We now transform Eq. (2.23) to the frequency domain. The transfor-

mation is done in a manner popularized by Fenlon and Korpel. Time and

distance dependences of the velocity variable v(XT) are separated by expanding v as

a doubly infinite series of exponentials in time, with range dependent amplitude

V M,)
n '

v(X,r) V (X)exp(jn'-) . (2.24)

flz-co

The index n represents the nth harmonic of the signal.
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Since v is a real quantity, we require that V_n and Vn be complex conjugates. The

series approach is preferred to an integral transform because our incident signals

are monochromatic or at least periodic. The nonlinear term contains the factor

v sgn(v), here abbreviated as w(Xr), which represents the speed (not velocity) of the

acoustic flow

w(X,'r) _ vsgnv W 7 Wn(X)exp(jnr) , (2.25)

n=-,

and W -n=W n * The speed w corresponds to a full-wave rectified version of the 5

signal, and the spectrum W n corresponds to the spectrum of the velocity-dependent

resistivity.

Substitution of Eqs. (2.24) and (2.25) in Eq. (2.23) leads to the in-

homogeneous Helmholtz equation,

" 2"

VI + qnV jnQR VpW (2.26)

p

where the double prime denotes two differentiations with respect to the argument

X, and q n=n _2(l-jR 1 /n) is the complex dimensionless wave number, which may be S

written

qn q nr j q ni (2.27)

The real and imaginary parts are

26
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q nf (+ i()) (2.28)

and

q n R) (2.29)

The polar forms are

q r q I cos(tan- 1Q) ,(2.30)

qni I ,sn~a-Q (2.31)

where

and

QnR 
2

D)espite its compact form, the inhomogeneous Helmholtz equation is

extremely difficult to solve. Approximate solutions of Equation (2.26) are the

subject of Chapter 3.
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CHAPTER 3

SOLUTIONS 0

A. Introduction

Chapter 3 is devoted to solutions of the inhomogeneous Helmholtz

equation for progressive waves. Solutions for low intensity linear behavior are

investigated in Section B. Examination of these solutions gives a basic under-

standing of the effects of resistivity on small-signal waves. An introduction to the

theoretical problem of finite-amplitude waves in porous media is offered in

Section C. An approximate first integral of Eq. (2.26) is developed that is the basis

of the solutions in subsequent sections. In Section D, we investigate propagation of

a tone subject to nonlinear resistivity effects. It is assumed here that the harmonic

distortion products, though inevitable, are weak enough to be neglected.

Concentrating, then, on the fundamental, we obtain approximate analytical solutions

for pressure, particle velocity, phase velocity, and impedance magnitude and phase

angle. Section E contains a discussion of the approximate solution for high intensity

periodic waves in which the harmonics are taken into account. The multiplicity of

harmonic interactions and interlocking solutions, as defined by the convolution term

in Eq. (2.26), makes it necessary to seek a numerical solution. Harmonic

propagation curves, i.e., amplitude versus distance for the various harmonic

components, are generated. The numerical solution gives insight into the evolution

of harmonic distortion products and in addition provides predictions against which

experimental data may be compared.

R PEVIOU S P AG E
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A series of general expressions are now given in preparation for the 0

analytical solutions discussed in Sections B and D. These definitions simplify the

analysis and clarify the effects of resistivity in the linear and nonlinear regimes.

1. Velocity and Pressure

The particle velocity v(X,r) can be expressed as an infinite sum of

sinusoids with range dependent phases 0vn() and amplitudes A n(X):

vn n

where An(X) and 0 vn (x) are real and are related to V n (defined in Eq. (2.24)) by

Vn() = 2n(e xp -JOn(X (3.2)

Use of the A notation allows the amplitude and phase effects to be easily separatedn

so that they may be considered independently.

The nondirnensionalized pressure signal is defined as

p(X,r)- p
2- Pn( ) exp(jnr) (3.3)

PC 5 n - c

A A

where P =P * and, alternatively,
-n n

(,): :()sin (nT-rOp(X) )(3.4) i

where n and o are rtal, and
pn

30
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For a progressive forward-traveling wavefield B n(0) is expected to be identically a

zero. Unfortunately, we are unable to accurately specify the boundary conditions

for finite amplitude waves, so that B n(0) retains some residual value. Since the

backward-traveling wave decays for decreasing X, it grows just as rapidly in the a

forward direction as the forward-traveling wave decays. Eventually a point is

reached where the spurious backward-traveling wave solution obscures the desired

solution. The larger the values of qni the more rapidly the accuracy of the solution

deteriorates.

In order to achieve a stable solution, the second order system of equations

must be reduced to first order by applying the condition that the wave field is S

progressive. An exact first integral of Eq. (2.26), similar in form to Eq. (3.13), has

not been found because of the complexity of the convolution term. We therefore

seek an approximate first integral. S

2. Approximate First Integral

The approximate first integral isolates forward wave behavior within o

Eq. (2.26), but does so at the expense of some accuracy. Since we seek solutions for

the forward-traveling waves, we propose a solution of the form

Vn(X) = Fn(X) exp(-jqnX) , (3.26) ,

where the deviation of F (X) from a constant value is due to nonlinear effects, and
n

the exponential term represents small-signal effects for a forward-traveling wave.

One may think of F (M) as an apparent harmonic source amplitude which is allowed 0n

to vary with distance in response to nonlinear effects. Substitution into Eq. (2.26)

gives

F n"- 2jqn F n' jnQR 2 P VpWn-p exp(jqnX) (3.27)

p
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of the signal at the microphone closest to the source, which we call the reference

microphone. Although the transducer input is always sinusoidal, various nonlinear

processes cause the high amplitude signal to distort before it reaches the first

microphone position; the signal at the initial pont therefore contains all harmonics

of the original tone. The SPL of the harmonics are measured and from these the
A

harmonic pressure amplitudes P n(0) are dt termined. These amplitudes serve as

A
starting points for the solutions Pn(X), to .vhich we compare the data from

microphones at other positons.

In order to specify the solution of Eq. (2.26), it would be necessary to

know the initial values (that is, the values at the initial point) of both Vn and V '.n n

However, only one of the boundary conditions can be synthesized from the pressure
I A

data; the value of Vn is linked to Pn through the continuity equation, Eq. (3.10). The

remaining boundary condition, however, is the value of V at the referencen
A

microphone. No exact general relation has yet been found between Pn and V n . The

value of V must therefore be estimated. We tried using various successive
n

approximation methods to obtain the necessary estimates but found solutions of

Eq. (2.26) to be so unstable that all attempted approximation schemes ended in

failure. The reason for the extreme instability is that the Helmholtz equation

belongs to a class of differential equations called "stiff". In a stiff equation the real

parts of the roots (eigenvalues) of the characteristic equation are widely separated,

i.e., the values Iqnil are large. Attempted solutions based on one eigenvalue of the

system are easily contaminated by errors (numerical and otherwise) which become 0

forcing functions for the undesired solution.

A better understanding of this problem may be gained by examining the

homogeneous solution of Eq. (2.26), S

V n(X) Bn(0) exp(jq nX) + Fn(0) exp(-jq n X) (3.25)

43



The method of separating the amplitude and phase information developed in this 0

section is applied in Section D to the problem of a finite-amplitude tone.

C. Introduction to the Nonlinear Problem

The method of solution of Eq. (2.26) for finite-amplitude waves is dictated

largely by the information available from the experiment. Without going into great

detail, we can say that the experiment provides the harmonic pressure amplitudes 0

A
Pn at several ranges for a progressive wavefield. While a single boundary condition

per harmonic is available, the inhornogeneous Helmholtz equation, Eq. (2.26), is

second order and thus requires two boundary conditions per harmonic. The missing S

condition is the radiation condition, for which we have found no general analytical

expression. Without this expression we can neither specify the second boundary

condition exactly, nor can we integrate Eq. (2.26), in which case one boundary 0

condition would be sufficient. Moreover, the missing boundary condition cannot be

estimated accurately enough to prevent the numerical solution from becoming

unstable. An approximate first integral is therefore developed which allows a stable

solution for a progressive wavefield. Errors arise in the approximate solution but

they are at least qualitatively predictable.

For future reference we here introduce some special nomenclature. We S

are oftentimes concerned only with how the fundamental component of the wave

propagates. The fundamental with higher harmonics neglected is, for simplicity,

referred to as a "finite-amplitude tone". When the higher harmonics are included in

the analysis the signal is referred to as a "distorted sinusoid".

I. Boundary Conditions

The boundary conditions are taken to be the harmonic pressure amplitudes

42
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zero. Figure 3-3 illustrates the dependence of the impedence magnitude on RI and

Fig. 3-4 does so for the impedance phase angle.

3. Small-Signal Pressure Wave Solution

The solution for pressure waves is found by simply taking the product of

the particle velocity and impedance. Since Zn is independent of amplitude at low

intensity, the pressure has a similar solution •

0o

p(X Y- ii 'n exp(-cniX) sin (nT-r qnrX - pn(o)) .(.3

The phase velocity of the pressure wave and that of the particle velocity wave are

therefore identical:

n

C _ n (3.24)
p pn nr

The attenuation constant of the pressure signal is the same as well. This is the

expected result.

4. Summary

The effects of resistivity on low intensity acoustic signals are summarized 0

as follows: the linear resistivity coefficient R is the most important parameter

controlling the flow of acoustic energy, since it

I) causes attenuation,

2) causes dispersion, and an overall decrease in the component phase

speeds, and

3) increases the impedance magnitude, and introduces a constant phase

angle between the pressure and particle velocity signals.
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Another effect of the resistivity is to reduce the phase speed of the wave.

The phase speed is evaluated by combining Eqs. (3.6) and (3.17) to obtain

C n _ n . (3.21)vn0,qv n q nr

Resistivity causes the phase velocity to be substantially less at low frequencies than

the sound speed. The dependence of C vn on R can be seen in Fig 3-2, where once

again a value of Q,=1 has been used for simplicity. The true phase speed value is

c = C vn. The high and low frequency asymptotes, subject to frequency constraints

on the theory, are the isothermal sound speed at high frequencies and

c = c I  Po

at low frequencies. The low frequency phase speed and attenuation have ,J

dependence which is indicative of a diffusion process.

2. Small-Signal Characteristic Impedance

The characteristic impedance is strongly affected by resistivity.

Equations (3.16) and (3.17) are substituted into the general impedance relation,

Eq. (3.11), to give

Zn [ niq n (3.22)

At low frequencies sound propagation is reduced to a diffusion process, charac-

terized by an impedance magnitude of I rPOW and a phase angle of 45°. At high

frequency the magnitude of the impedance approaches rJ f and reactance drops to •
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Ovn( qnr X +vn(n(O) , (3.19)

where 0vn(O) is the value of ovn(X) at the effective origin and we see that qnr is the

propagation wave number. The general solution for the particle velocity for small-

signal progressive waves is therefore

v(XT) An(0) exp(-qnix) sin (nT -qn rX - vn(0)) - (3.20)

One effect of the resistivity is to attenuate the wave as it travels. The

nondimensional rate of attenuation varies according to Eq. (2.29), with the dimen-

sionless grouping RI defined in Eq. (2.23). Figure 3-1 is a graph of Eq. (2.29) where

for simplicity the value 0 =I has been used. It is seen that the attenuation increases

with the dimensional resistivity rI and frequency. The dependence of qni on

porosity is complicated because rI is itself a function of porosity. The range

O<R <50 is sufficient to cover the audio spectrum for most materials. At high

frequency (RI<<I) the true attenuation, c=wqniCi, reaches an asymptotic value

oi=r /2p c,, which is independent of frequency. The low frequency asymptotic1

result is

I r I '

ci2p'

which is proportional to Tf just as in the case of boundary layer dominated 0

attenuation. The high and low frequency results are not very useful, however,

because the isothermal sound speed is inappropriate at very high or very low

frequencies, nor is the frame rigid at low frequencies.
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V' + jqnVn =0 (3.13)

and

V'- jqV =0 (3.14)
n n n

Equation (3.13) is the relation for the furw-r' traveling wave, Eq. (3.14) for a

backward traveling wave. We now concentrate on Eq. (3.13), which may be

interpreted as a first integral of the Helmholtz equation for forward traveling

signals.

Amplitude and phase information inay be obtained by substituting Eq. (3.1)

into Eq. (3.13); one finds that

A'n + j(qn- 0' )A = 0 (3.15)

n n vn n

The real and imaginary parts of this equation give relations for the amplitude and

phase, respectively, vis.,

A'+ qA =0 , (3.16)n qni n'"

and

qn - ' vn =0 ,(3.17)

where qnr and qni are given by Eqs. (2.27) through (2.31).

1. Particle Velocity Solution

Solutions of differential equations (3.16) and (3.17) are quite simple. The

range dependent amplitude is 0

AN (X) A (0) exp(-q nX) , (3.18)

n n-

where An(0) is the value of An( ) at the effective origin of the signal. Thus qni is

the decay constant. The phase function is
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jn n + V' 0 (3.10) 0

We first divide Eq. (3.10) by Vn,

nn

JnZn +v--0 ,
n

nn

and then substitute for V n and V nt using Eq. (3.2) to solve for Z ni

Z 1 [, jAn
Zn= n [n A (3.11)

It is interesting to note that the rate of change of phase of the wave represents the

real impedance while changes in the wave amplitude represent the reactive part. ."

B. Low Intensity

Attenuation and phase velocity are controlled at low intensity by the

dimensionless linear resistivity coefficient R I. The Helmholtz equation takes the

linear form

nqnVn = 0 (3.12)
n n n

for small signals. This second order differential equation may bF. factored into two

first order relations by use of operational notation. Equation (3.12) is first written

as

D 2+qn2 Vn  0

or

D(Dx jJq n)( -jqn)V n =

* where Dx represents differentiation with respect to X • The "roots" of this factored 0

equation are

33



3. General Definition of Characteristic Impedance

The characteristic impedance is defined in general as the ratio of the

pressure to the particle velocity for a given harmonic component:

A
P nZ= V AN exp .( n v (3.8)n n n

If Zn is written in polar form,

Z n  = Zn exp(-j Ozn) ,(3.9a)

it follows that

iln(X)
n. (3.9b)I nI 4. 'jn

and

/ -lm(Zn) -9
0 zn -- tan1I \OZ} 0 pn Ovn (3.9c)

A general relation for the impedance can be found by using the continuity

equation which, although linear in form, provides a relation appropriate for all

amplitudes because the hydrodynamic nonlinear terms have been neglected. We

2first replace pt in Eq. (2.16) by pt/Ci and then nondimensionalize the result to find

A

* Equations (3.1) and (3.3) are here substituted into this equation to give the 5

dimensionless continuity equation in terms of the harmonic components,
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Pn(X ) M j exp (-j@pn(X)) (3.5)

2. Phase Velocity

A general expression for phase velocity, applicable in both the linear and

nonlinear cases, may now be derived using the notation of Eqs. (3.1) and (3.4). The

phase speed is defined as the rate of travel of a constant phase plane, that is, a

plane for which the quantity nT--rvn(X) remains constant. Upon differentiating this

expression we find that

* ndT- vndX = 0,

where the prime again denotes differentiation with respect to the argument X. The

phase velocity of the nth component of the particle velocity wave is therefore

JS

dC -Tn (3.6)
Cvn dT const. 0'

phase

The phase velocity for the pressure signal is similarly defined as the rate of travel

* of a plane for which nr- 0 (x) stays constant,

pn

* C _ d co ,n (3.7)
pn- dr const. -0 pn

phase

Two phase velocities are defined because the impedance phase angle is amplitude

dependent at high intensity and therefore the pressure and particle velocity signals

travel at different speeds.
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'-' 31"

* .. I



Note that this substitution has not reduced the number of eigenvalues in the -

problem; to accomplish this feat an integration is necessary. The danger of

contamination by spurious backward-traveling waves still remains. We have,

however, shifted the eigenvaiues of the linear problem to 0 and 2jq n so that we can

take advantage of the differing relative importance of the terms F and F 'for the

two wave types. The following analysis is carried out as if there were no backward

waves, and it is this selective vi-ion which accomplishes the integration. For •

forward-traveling waves where the nonlinearity is moderate, the transition between

nonlinear and linear behavior is thought to be sufficiently gradual to warrant the

assumption that Fn' can be neglected relative to Fn' Removal of the Fn term

results in a truncated version of Eq. (3.27),

Fn'(X) -n "2 V WV exp(qnX) (3.28)n2q n p n-p n

p

*" In effect an approximate first integral of Eq. (2.26) has been obtained,

- OR2 2S

Vn + jq nVn n 2Z VpWn-p (3.29)

p

The fact that Eq. (3.29) is the appropriate first integral is proved by noting that the

relation I " <<12qnFn'l is not satisfied by a backward-traveling wave.

Equation (3.29) is therefore an approximate differential equation governing pro-

* gressive waves.

3. Solution Errors

In the process of rejecting the spurious solution, a certain amount of

information regarding the spatial dependence of V has been lost. Implicit in
n
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Eq. (3.29) is the supposition that the transition between nonlinear and linear

behavior is gradual. For very large amplitude waves, however, the transition is

relatively rapid and F n" is not negligible. The errors of the approximate solution
•n

that result are called "overshooting" after their graphical manifestation. Non-

linearly induced gains and losses for the fundameiital and various harmonics (see

Section E) of the signal are predicted too large. Since the exact solution is not

known, there is no way to quantify the errors of the approximate solution. The

errors will, however, become apparent when the solution is compared with measured

data in Chapter 4.

D. Propagation of a Single Tone

We now consider propagation of a single tone of finite amplitude. The

effects of the inevitable harmonic distortion components on the tone are neglected

because the higher harmonics are very weak relative to the fundamental. With the

aid of the approximate first integral, we are able to find analytical expressions

governing the amplitude and phase of the wave and the impedance of the medium.

Analytical solutions of Eq. (3.29) are obtained for a tone

v(X,T) = AM(X) sin ( -Ovl(X)) , (3.30)

which has spectral components VI=(AI/2j)exp(-j0vI(X)), and VI =V*. Since these

are the only harmonic components assumed to exist, the convolution term of

Eq. (3.29) is shortened considerably:

i[ V'l jql~l - O 2-...

+ V W (VWo+V1 W2 ) (3.31)

1 00
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A The spectrum W of the full-wave rectivied version of an arbitrary signal -
~n

is usually too complicated to analyze. In the pure tone case, however, it is

straightforward. The rectified signal is defined as
O

A I(M I sin(r7-- ovl( I 

Application of the Fourier transform gives

A I(X)exp (jnT',v I(X))[ 7r 2 7W n( M 2 7r "oi1(T )e xp(- in-r)dT ' -fsin(T')exp(-jnT')dT

where r'--r- v (X). Finally, evaluation of the integrals yields

2A MX

W (X) 2 exp(-jnv(X)) (3.32)

for n=even and 0 otherwise.

A differential equation in AI and v1 arises when we substitute Eq. (3.30)

and (3.32) into Eq. (3.31),

OR!
A", - 2AR2 4 2 (3.33)A'1 + J~ql°0vl)Al q1 3 AI 1 .

As in the linear analysis (Section B), the real and imaginary parts of Eq. (3.33) give

separate relations for amplitude and phase information,

A', q l iA
l  2-Kqlr A, (3.34a)

and

q - = ,-KqlA (3.34b)
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where

4R 2K =(3.35)

+4R2

is the coefficient of resistive nonlinearity. For the Kevlar samples used in our

experiments the value of K was often 20 or greater. Since the hydrodynamic

distortion effects would have been scaled by the dimensionless coefficient 8=1.2, we

see that it is indeed correct to neglect them.

The amplitude of the particle velocity wave is found by integrating

Eq. (3.34a) directly,

A (0) exp(-qiX)AI(X - + r rI-exp(-qli) IM6)'

where F=KA (0)/Ql, which is directly analogous to the Gol'dberg number.T

Figure 3-5 gives plots of log(A 1) versus distance for various initial particle velocity

amplitudes. Low intensity waves experience simple exponential decay. Hence, the

corresponding curves are straight lines. High amplitude waves, however, undergo

excess attenuation as a result of nonlinear resistivity. As a result, the propagation

curves bend. For very high source amplitudes the pressure amplitude approaches an

asymptote (the dotted line in Fig. 3-5): the amount of energy that can be

transmitted to a given point cannot be exceeded regardless of the starting

S 0 I

The Gol'dberg number, which was originally developed for distortion due to

nonlinear effects in nonporous fluids, measures the relative importance of the

nonlinear distortion effects to small-signal attenuation.
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amplitude. The "saturation" 25 limit is determined by the properties of the medium

and is independent of the initial amplitude.

Although some have heretofore thought the excess attenuation in porous

materials is due to conventional nonlinear effects in the fluid, we now see that the S

true cause is nonlinear resistivity. Equation (3.36) is of the same form as the

equation derived by Webster and Blackstock2 5 to describe excess attenuation and

saturation of a nonlinearly propagating pure tone in free air. In their model, excess S

attenuation and saturation are a direct consequence of shock formation. Intense

sound waves in porous media, however, do not form shock waves because the

harmonics are rapidly attenuated and dispersed. The form of Eq. (3.36) was also

obtained by Kuntz as a result of his empirical model of attenuation of a tone in a

porous medium. The fact that Eq. (3.36) can be derived analytically proves that the

basis of Kuntz's model was correct. 5

The phase speed of the particle velocity wave is affected by the

nonlinearity in a rather unexpected way. Substituting Eq. (3.10) into Eq. (3.6), we

obtain

C vl r+ KqliAl . (3.37)

The phase speed is seen to depend on the inverse of the propagation wave number qlr

at low intensity, but the amplitude dependence causes Cv1 to decrease at high

amplitude (see Fig. 3-5). A high intensity wave therefore starts by propagating

slowly, but as the wave is attenuated the phase velocity increases, eventually

reaching the linear value q r . The resemblance of the characteristic shape of the

curve in Fig. 3-6 and that in Fig. 3-2 should be noted.

In Chapter 4 the relative phase between two points is measured as an

indication of the phase speed, to which it is closely related. Equation (3.34b) can be

50 0

- _ -- - . : . . . . .- - . . . " - -"



a) 0
cLD

CT j 1.0 CC

U\ 0. 0
4- t. CE S

U,4-

-L N0

CL

4--)
- \j 0 OJ

0. u.1

r- -

OUGI L
QJ0 L DI

Paa S S qd azL LL~'"O S a O I' :)NE

A-8556

51.



integrated to give the phase function .

~(X) q1~ + QlIn ( I-+r(.exp(-q 1 .X))+ (0) .(3.38)

The nonlinearly induced decrease in the phase speed is manifested here in the 5

logarithmic term, which represents the increased relative phase at high intensity

between two points. The full particle velocity solution is therefore

V(XT) 1A(0) exp(-qliX)
I+ ( Iexp -q1 iX))

x sin T-qIrX-Qltn (1+ r (-exp(-qiX)) - OvI(0 . (3.39)

The impedance of the wave is strongly amplitude dependent. The general
0

impedance relation Eq. (3.10), combined with Eqs. (3.34a) and (3.34b), gives

z I (qlr+KqliAl) - j(qli+Kq Ir A,)  (3.40a)

or S

Z = q, - jKA~q* . (3.40b)

The magnitude of the impedance can, after some manipulation, be shown to be

1z 11 = ( q 12  ( +(K A ,) 2  + 2R K A 1  , (3.4a)

which can be approximated by

Izll 1qll( I + KAI ) (3.41b)

when R is sufficiently greater than unity. As one may readily observe from

Eq. (3.41b) and Fig. 3-7, the impedance magnitude increases linearly with particle S
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S

velocity. The phase angle of the impedance is S

tn + KqliA1  (3.42)

Once again the phase information gives a surprising result. The impedance phase

angle varies between a high intensity asymptote tan- (I/Q 1 ) and a low intensity

limit tan- (Ql). The material is relatively more reactive at high amplitude; as the

wave travels and is attenuated, the reactance approaches its low intensity value.

The amplitude-dependent impedance phase angle has interesting consequences for

the pressure wave phase velocity, as we shall see shortly. A plot of Eq. (3.42)

appears in Fig 3-8.

The solution for finite-amplitude pressure waves is again simply the

product of the particle velocity and impedance,

P(X, T) = A (X) ZM(X) sin(T- 0(x)- 0 1 (x)) (3.43)

The pressure signal is subject to excess attenuation and saturation just as the
i

particle velocity is. But since the impedance magnitude is amplitude dependent, the

functional dependence is slightly different. Although not apparent from Fig. 3-7,

the impedance reaches a high amplitude limiting value which is determined by the

particle velocity amplitude at saturation. The product of the saturation limits of

the impedance and particle velocity as a function of x gives the high intensity

pressure amplitude asymptote. Propagation curves for various initial pressure

amplitudes are given in Fig. 3-9.

The most surprising result of this section comes when we consider the

phase velocity of the pressure wave which, from Eq. (3.7) and the definition of

impedance phase angle, is
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=+ 0zl) . (3.44)

This phase speed is different from that for the particle velocity because at large

amplitudes ' does not equal zero. The value of Ov'l has previously been given,

but the value of oz', must be obtained by differentiating Eq. (3.42) with respect

to x. It can be shown that the rate of change in the impedance phase angle with

distance is

-qlinQl exp(-q1li)0 'z(i 00 1 B 2 2x(- (3.45)
(I - B exp(-qlijX2 +Q2

v(1-Q1 2)

where B -
1 +V

The 0 ' term opposes the o ' term. The pressure signal therefore travels slightly
z! vl

faster than the particle velocity signal. As the wave is attenuated, the phase speeds

of the two waves eventually converge to their mutual small-signal value q In

Fig. 3-10 the pressure phase velocity C p1 is shown as a function of distance for a

given source level. The corresponding curve for Cvi is provided for comparison.

This phenomenon has been observed during the course of our experiments, and is

reported in Chapter 4.

Several general conclusions can be made regarding the effects of high

intensity on propagation of a finite-amplitude single tone: 0

1) The nonlinearity causes excess attenuation and, in the limit,

saturation.

2) The phase velocity is less than its small-signal value. ,
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B. Experimental Apparatus

This section is divided into discussions of the traveling wave tube, the dc

flow test apparatus, and the acoustic test apparatus. Since the traveling wave tube

is common to all experiments, it is discussed first, followed by a discussion of the dc

flow apparatus and of the acoustic test equipment.

The traveling wave tube is the central piece of equipment for all the

experiments. The sample fills the tube and is held in place by friction with the 0

walls. The tube provides for measurement of acoustic and static flows in the

sample. The length of the tube is 26 in., the inside cross-section is 3/4 in. on a side,

and the wall thickness is 1/8 in. A screen of 0.008 in. steel piano wire restrains the 0

sample just inside what we call the downstream end of the tube. A series of 4 in.

diam. holes are drilled in the top side of the tube to serve as microphone ports.

Engineering drawings of the tube are presented in Fig. 4-1 for the convenience of

the reader (reproduced from Kuntz's dissertation by his kind permission).

2. dc Flow Apparatus

The dc flow apparatus measures the pressure drop across a porous sample

as a function of flow speed. The traveling wave tube was originally designed for

acoustical measurements, not for high pressure dc flow tests, so the tube had to be

modified to accept a static flow input and to prevent leakage from the microphone

holes. An adapter, fabricated from a block of hexagonal aluminum stock, is affixed

at the upstream end of the tube to provide attachment points for the incoming flow

and for the pressure gages. The adapter is clamped to the tube and a gasket

guarantees a tight seal. A strip of rubber gasket material backed with aluminum is

clamped on top of the tube to seal the microphone holes. These modifications were

quite effective; at no time was the tube observed to leak.
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1) the dc and ac flow resistivities are the same, and

2) the dominant nonlinear mechanism is a speed dependent resistivity

of the form r=r I +r u sgn(u).

The ac resistivity inferred from the small-signal attenuation data is compared with 5

the dc resistivity to test the former assumption, and the qualitative agreement of

the harmonic data and predictions is taken as an indication of the validity of the

latter assumption. Data from the phase velocity test provides, for comparison with 0

the prediction of Eq. (3.35), that a high intensity tone propagates more slowly than a

small-signal wave of the same frequency.

The static flow and acoustic tests previously performed by Kuntz used a

separate apparatus for each test type. Hence the static flow and acoustic

measurements were performed on different samples. Since it is very difficult to

create samples with identical properties, one is led to wonder about the com-

patability of the two data sets. We have therefore modified Kuntz's traveling wave

tube to accommodate both the acoustic and static flow experiments. Experimental

results indicate that the key assumptions stated above are at least qualitatively

valid.

The remainder of Chapter 4 is divided into four parts. Section B contains

a discussion of the equipment used in the experiments. Experimental procedure is

detailed in Section C. Finally, the experimental data and theoretical predictions are

compared in Section D. Section E is a summary of the experimental work and the

conclusions drawn therefrom.
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CHAPTER 4

EXPERIMENTAL WORK

A. Introduction

Three experiments have been performed to measure the effects of a

porous material on static flows and acoustic signals. Comparison of measured data 0

to theoretical predictions provides an indication of the validity of the theory. We

discuss the experiments in the following order:

1) static measurement of flow resistance, 5

2) propagation measurements at high and low intensity,

3) phase speed measurements.

In the first we measure the pressure drop across a length of bulk porous material for 5

various dc flow rates, from which we determine the resistivity of the sample as a

function of flow speed. The second experiment comprises measurements of the

harmonic sound pressure levels at various ranges. In the third test we determine the

phase speed from the relative phase of the fundamental between two points. The

latter two experiments are referred to here as the acoustic tests.

The dc data and the acoustic data serve different purposes. By fitting

Eq. (2.9) to the dc flow resistivity data for a given sample, we determine the

constants r I and r 2 . These constants are treated as properties of the medium and

serve as input parameters for the numerical and analytical solutions. The

experiments are intended to confirm or refute two of our key assumptions, namely:"-

t
'The actual chronological order is discussed in Section C of this chapter.
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The computer program for the numerical solution is easily reconfigured to -

accommodate the cubic nonlinearity. The modified program was run starting with

the same initial levels used to produce the curves in Fig. 3-12. The predicted

behavior for cubic nonlinearity, shown in Fig. 3-13, is qualitatively very much like

that for the v2sgn(v) nonlinearity. This should come as no surprise, since the

resistivity curves r(u) for the two models are designed to mimic the same set of

resistivity data. Although the u sgn(u) model gave a better fit to the resistivity S

data, the quantitative results are not that much different here. Moreover, when

compared to the measured acoustic data the differences between the two solutions

are smaller than the approximation errors inherent in the solution (see Chapter 4

and Appendix B). We are therefore led to believe that a cubic nonlinearity may be

2substituted for the v sgn(v) nonlinearity. This approach will be of considerable - ,

usefulness for a planned perturbation solution of a high intensity sound field in a

lined duct.

Analytical solutions of Eq. (3.54) for the finite-amplitude tone case are

very similar to their counterparts based on Eq. (3.29), and are given in Appendix B.

We have acquired basic understanding of the harmonic distortion caused

by nonlinear resistivity. The numerical solution, which is based on an approximate

first integral of Eq. (2.26), provides quantitative predictions for the cases of initially

pure tones and distorted sinusoids. The fundamentals of the distorted sinusoids are

shown to behave like the tones discussed in Section D, and the growth of harmonics

is in a cubic distortion pattern. In Chapter 4 we compare the numerical solution

results with measured data. Details of the computer program used to implement the

solution are discussed in Appendix C.
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energy is dissipated). The second harmonic is less strong than the fundamental but,

because a negligible amount of energy reaches it from the fundamental, it too

functions as a primary. Most of its energy is lost to augmented resistivity and in so

doing it energizes the higher even harmonics. In fact, a second harmonic •

independently undergoing cubic distortion would energize the sixth, tenth, and

fourteenth harmonics, and so on. It is therefore of interest to note that the fourth

harmonic and its multiples are not members of the second harmonic cubic distortion S

product group. They are products of coupling between the primaries as represented

by the forcing function V2 W2 which relies heavily on the fundamental strength

through the factor W2 . Figure 3-12 shows the first five numerically calculated S

propagation curves for a distorted sinusoid. The initial harmonic levels are those of

an actual measured signal.

3. Cubic Nonlinearity

All of the aforementioned distortion spectra could he explained equally

well in terms of a cubic nonlinearity, i.e., the nonlinearity which results from use of

the quadratic resistivity form

2
r=r +r 3 u

In this case, the corresponding form of Eq. (3.29) is •

Vn jV -n 2 V qVn-p-q.54)
n pq q--

Analysis of the convolution term reveals that a pure tone input produces odd

harmonic distortion products. Indeed, the "cubic" distortion pattern was named

after the effects of just such a nonlinearity. This pattern leads us to suspect that .

2
other results for cubic distortion are similar to those for v sgn(v) distortion.
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2. Propagation of Distorted Sinusoids S

We now consider the case of propagation of distorted sinusoids like those

used in our experiment. These signals are characterized by a strong fundamental

accompanied by both odd and even harmonics which decrease in amplitude with

increasing harmonic number. Although it is difficult to demonstrate analytically, it

turns out that the addition of even harmonics to the signal has the effect of causing

odd harmonics to appear in the rectified signal spectrum. We can make predictions

of the harmonic propagation curve shapes by examining the differential equations

governing the first four harmonics,

V'1 + jq1 VI

Q- R 2(V W...); V+(V) = VI0, (3.53a)

0

V'2 + jq 2V2

2~22

- +VW +V W +VW );V 2() =V 2 0 , (3.53b)

-3 R 2  -

V'3 + jq 3 V3  2 (VlWE+V W4+V3 Wo+V W6 + ... ) ; V3 (0) = V3 0  (3.53c)

and

V + jq V (V2 W2 +V*W6 +VIW3+VjW5 +...) ; V (0)=V 40  . (3.53d)
2215

Again, only the most prominent forcing functions have been listed.

The fundamental is the strongest component in the signal. It is subject to

excess losses because of the augmented resistivity, but some of its lost energy is

upshifted in frequency and strengthens the family of odd harmonics (the rest of the
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For the pure tone case, it is rather easy to recognize the primary and the I

distortion products. The differential equations governing the first four harmonics

are

2R 2
1 + jqV - (V Wo+W 2+V3W + V W 4+ ... ) VI(0) V (3.52a)2q, 1 0q~ 12ql23 1 1

V' 2 + jq 2 V2 =0 ; V2 (0)=0 , (3.52b)

-3 w22+ ..(V ) v3+oV = 0 0 (3.52c)
V3 + jq 3 V3  - 2q 3  1w2 V 1W4 V3 W0  3 6

and

v4 jq4 V4 =0 ; V4(0) 0 (3.52d)

The fundamental can be identified as a primary by the term R2 VIW 0 on the right-

hand side of Eq. (3.52a). The equations for the even harmonics are homogeneous.

Because the initial values for these equations are zero, the even harmonics stay at

zero amplitude for all distances. The odd harmonics, however, are vigorously

energized by the fundamental as shown by the presence of forcing terms containing

SV1 and VI*. Because their initial amplitude is zero, the odd harmonics are expected

to have the characteristic rainbow shape. Figure 3- 11 is a graph of the propagation

curves for an initially pure tone. It is not possible to compare these predictions with

data because we were not able to produce a true pure tone at high intensity in a

porous material. This example is, however, very useful for helping us understand the

distortion of more complicated signals.
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d IVnI + q IV n I S 0 , (3.49)e
-x nni n

which implies that the attenuation rate exceeds that for a small-signal wave qn1'

Other harmonics are net receivers of energy. They are called distortion products,

and are characterized by the relation

_ IV + q iV (3.50) B

Occasionally a distortion product receives such a rapid influx of energy that the

harmonic amplitude initially increases with distance,

0 SI >

d IV(3.51)dx Vn -

The harmonic amplitude does not increase indefinitely, however. As the primary

decays the loss mechanisms soon overtake the energy influx. In this case the

corresponding propagation curve takes on a characteristic rainbow shape.

1. Propagation and Distortion of an Initially Pure Tone

The case at hand is that of an initially pure tone, for which the rectified

* spectrum has been shown (see Eq. (3.32)) to consist entirely of even harmonics. In

the case of a pure tone, the resistivity varies in time at even multiple frequencies of

the fundamental. As a result, odd harmonic distortion products are introduced into

* the signal. Despite their introduction, it turns out that the Wn spectrum retains its

even harmonic character. An initially pure tone is therefore expected to acquire

-' only odd harmonic distortion components. This pattern is commonly referred to as

cubic distortion. .
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particular, we are interested in the solutions for a distorted sinusoid like those used

. in our experiment. Closed form analytical solutions are not possible in the general

case because the spectrum of the full wave rectified signal (W ) cannot be expressed
n

as a direct function of the signal harmonics V . In addition, the full solutionni

consists of a large number of interdependent individual solutions, one for each

harmonic in the signal. For these reasons the general case is best solved by

computation. Nevertheless, qualitative predictions can be made by inspection of

Eq. (3.29).

A single initial value for each harmonic is required to solve Eq. (3.29),

namely V n(0). The values of V n(0) are easily determined from the available data for

Pn(0) by means of an approximate impedance relation that we now derive. The

continuity equation, Eq. (3.10), relates Pn and V n', and the first integral Eq. (3.29)

relates V n and V . These relations are combined to give an approximate impedance

relation

A
P q 2 R 2  V W
vn  n qAd :p (3.48)
Vn- 2qn p Vn

Since the distortion spectrum VpWn~p depends on the signal spectrum Vn, we

determine V n(0) by successive approximation. Minute approximation errors are no

longer a cause for concern, since the possibility of spurious wave solutions has been

eliminated; the single initial value per harmonic is sufficient to fully specify a

stable solution.

The velocity dependent resistivity causes energy to be exchanged between

the various harmonics of the signal. Two basic but loosely defined classes of

harmonics arise: primaries and distortion products. Primaries are net suppliers of

energy to other harmonics. They are characterized by the relation
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3) The impedance magnitude and reactance increase with amplitude.

4) The phase velocities of the pressure and particle velocity signals

differ. The difference is due to the dependence of the reactance of

the material on amplitude.

Since the wave decays as it travels, the attenuation, impedance, and phase velocity

eventually revert to their small-signal values.

It is clear at small-signut resistivitv :-!fects are amgmc: tad v. higil

amplitude, that is, the higher amplitude wave encounters a larger resistivity. The

increased resistivity can be demonstrated by direct calculation. We consider a

nondimensionalized version of Eq. (2.9), S

R = R1 + R2 w(X,r) (3.46)

The average value of the resistivity over a cycle of the tone is simply

<R> = R + R 2 W0 (x) (3.47)

This result demonstrates a local increase in the mean resistivity because of the

passage of the wave.

The reader should note, however, that the resistivity actually fluctuates

in time because of the acoustic signal, as defined in Eq. (3.46). Time-varying

* properties of the medium signify that new harmonic components are produced by the -

interaction of the signal and the fluctuating resistivity. In the next section we

expand the analysis to include the harmonic distortion products as well.

F. Numerical Solution for Initially Pure Tones and Distorted Sinusoids

The purpose of the numerical solution is to generate theoretical pre-

dictions for comparison with actual signals. We must therefore eytend the solutions

of the inhomogeneous Helmholtz equation to include the har .onics of the signal. In
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The apparatus is best understood if the flow is followed from source to

outlet (see the block diagram in Fig. 4-2). A regulated 100 psi air supply drives the

flow. The flow rate F in standard cubic feet per hour (SCFH) is measured by one ofr

a collection of flowmeters which cover various ranges. The flow then enters the

tube at the adapter, passes through the sample, and exhausts into the atmosphere at

the left end of the tube. The gage pressure in inches of water (in. H2 0) at the

adapter block is measured by a series of pressure gages. Since the gage and tube S

share the same outlet pressure, the gage reading indicates the pressure drop across

the sampleAp. The resistivity is

r AP A___
F L

r

where L is the length of the sample and A is the cross-sectional area of the tube.

3. ac Test Apparatus

The ac test apparatus permits measurement of harmonic SrLs and

relative phase of the fundamental at six down range positions. Six microphones

were used in the experiment so that they would not have to be moved repeatedly.

The only drawback to this approach is that the signals from the microphones must be

adjusted so that the microphones respond equally to a given input. The microphone

nearest the source s called the reference microphone; the harmonic spectrum

measured at this -:;sition provides the boundary conditions for the numerical

calculation. Phase angle measurements are referred to the signal at this micro-

phone as well. The ac apparatus includes some rather elaborate electronics; the

reader is encouraged to make use of the block diagram provided in Fig. 4-3. Four

distinct sections of the apparatus are identified:
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1) the source section,

2) the acoustical section,

3) the measurement section, and

4) the control elements. 3

They are discussed in this order.

The source section begins with the oscillator and ends with the com-

pression driver. The oscillator produces a continuous pure tone which is appro-

priately amplified or attenuated by the voltage controlled amplifier (VCA) section

of the compressor. The compressor is a control element and is discussed below.

Since signal distortion is introduced by the VCA, a high-Q bandpass filter tuned to

the fundamental signal frequency is inserted in the circuit to remove unwanted

harmonics. It is desirable to have as pure a spectrum as possible at the reference

microphone because the harmonic distortion effects are more apparent. A decade

attenuator compensates for the gain of the filter. The source signal then passes to

the DuKane 200W amplifier and on to the acoustic source, a JBL 375H compression

driver with titanium diaphragm. The power applied to the driver was kept below

25 W continuous rms which, for 8 S2 nominal impedance, corresponds to a current

limit of 1.768 A as measured by the Keithley VOM. The oscilloscope was used to

visually warn the experimenter in the event of signal fluctuations or clipping.

The acoustic section of the experiment includej the tube, all associated

hardware, and the sample itself. The empty tube has a first cross-mode cut-on at

about 9 kHz; frequencies used here are low enough that inadvertent modal

excitation is not expected to be a factor in the measurements. An adapter connects

A compression driver is usually used to drive an acoustic horn.
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the driver to the tube by means of a tapered bore which smooths the cross-sectional 5

area difference. The microphones are placed in holders at the reference (0 cm), 2,

5, 8, 11 and 20 cm positions. In addition, the microphone holders grip the tube

tightly. Thus, tube wall mass loading is provided, which reduces vibration of the

holders. A narrow air gap is left between the microphone face and the sample to

avoid noise caused by direct contact of the fibers with the microphone face.

Finallv. t1-e n-'us sample serves as its own acoustic termination, since it provides

small-signal attenuations in the hundreds of dB/m. The sample extends well beyond

the 20 cm microphone position; no reflected waves are expected to be present

within the sample near the microphones.

Although the source signal is originally sinusoidal, the signal received at

the reference microphone is somewhat distorted at high intensity. Harmonics are

added to the signal by a variety of nonlinear mechanisms, including transducer 5

nonlinearity, propagation through the air, transmission through the material/air

interface, and propagation through the inaterial.

The measurement signal paths begin at each of the six microphones. Five

Bruel and Kjaer model 4136 and one model 4135 microphone were used. The signals

from the individua' microphones pass to a rack of instrumentation amplifiers where

the dc power supply voltages are removed and coarse microphone calibration is

done. Fine calibration is performed with a separate set of potentiometers so that

the microphones respond uniformly to the calibrated signal from a B&K pistonphone.

A six-3osition rotary switch is used to select the output of one microphone channel

at a time. The harmonic spectrum of the signal from the selected microphone is

measured with either a B&K 2010 heterodyne analyzer or an HP 3580A spectrum

analyzer.
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In early phase tests the relative phase between unfiltered signals from the

reference microphone and a selected microphone was measured using a Dranetz

305-PA-3009 phase meter. However, phase errors induced by the presence of

harmonics in the signals complicated the measurement considerably. Consequently,

later tests were performed using a Spectral Dynamics SD375 2-channel digital FFT

spectrum analyzer which measured the transfer function between the two signals for

a multitude of narrow passbands. Phase shifts of the fundamental component

measured with the SD 375 are not subject to intrusion of harmonics and are

therefore much more trustworthy.

The control elements exist so that the experimenter need not continuously

monitor the source section of the experiment. A signal is tapped from the reference

microphone channel and is returned to the control input of the compressor. The

compressor senses the rms voltage of the signal at the control input, compares it

with a voltage set by the operator, and automatically adjusts the VCA gain so that

the reference microphone signal stays constant. The compressor therefore

guarantees a stable SPL at the reference position.

C. Experimental Procedure

The following is a description of a single segment . the experimental

regimen as applied to an individual porous sample. A flowchart of the process is

provided in Fig 4-4.

1. Preparation

Preparation for the experiments consumed nearly as much time as the

experiment itself because the procedure of packing the tube was extremely tedious.

We began by selecting one of three sample porosities, namely 2 =0.94, 0.96, or 0.98. O

A large number of 3/4 in. squares were cut out of sheets of batted Kevlar( 29. The
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I

squares were originally 4 in. thick and had a natural porosity of about 0.985. The

squares were inserted one at a time a predetermined distance into the tube to

create a sample having the desired porosity as defined by

mI
m (4.1)

PKevLA

where in is the mass of the sample, L is the total sample length, PKev is the density I

of solid Kevlar (1450 kg/m 3 ), and A is the cross-sectional area of the tube. The

natural spring of the Kevlar resists packing, but friction with the tube walls holds it

in place. Once the packing was completed the microphone holders and driver S

adapter were affixed to the tube.

The homogeneity of the sample was tested by measuring the small-signal
S

attenuation in the material at each of the microphone positions. With the source

adjusted for a 100 dB SPL tone at I kHz at the reference microphone, the SPL at

each of the microphone positions was measured. If the SPL differences between the

signals at the 2, 5, 8 and II cm positions covered a range of more than I dB, the

sample was pronounced inhomogeneous and rejected. In this case the hapless

experimenter discarded the sample and repacked the tube. Otherwise, the propaga-

tion tests could begin. •

2. Propagation Experiment

The sound pressure levels of the signal harmonics at each of the six

microphone positions were measured for all possible combinations of the following

frequencies and reference microphone fundamental SPLs: 500, 1000, and 1500 Hz,

and 100, 120, 140, 150, and 160 dB. It was not necessary to perform all

combinations of microphone position, frequency, and SPL for the phase test.
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Microphone selection was limited to the reference and the 8 cm and 11 cm O

microphones because the changes in phase at high intensity were cumulative and

were not fully developed at earlier microphone positions; at the 20 cm position the

signal-to-noise ratio was usually too low to obtain stable phase readings. A full •

complement of reference SPLs was used, however, since the nonlinearly induced

phase shifts tended to appear rather suddenly. Once the phase test was completed

the microphones, microphone holders, and driver adapter were removed and the tube S

was reconfigured for the dc test.

The accuracy of our measurements was potentially quite good. The B&K

2010 is highly accurate and can be read to within 0.2 dB. Digital sampling errors in S

the Spectral Dynamics analyzer give errors of ± 0.2 dB and about 0.50 in phase. The

HP spectrum analyzer, which was not designed for such exacting tasks, can be read

to an accuracy of ± I dB. The high level of accuracy is in reality unnecessary:

inhomogeneities in the sample cause readings to deviate from simple small-signal

attenuation by up to ±.5 dB ! Since the theoretical predictions assume a homo-

geneous material, the inhomogeneities are the limiting factor for the applicability

of the data.

3. dc Test

The dc test was performed last for one reason: the sample usually

compresses during the test, and the final porosity was unpredictable. Moreover, the

sample can compress so far that it ceases to function as a termination. In extreme

cases, the sample may recede beyond the last microphone.

1 Samples with larger deviations are rejected.
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The test itself was quite simple. The flow rate was increased in steps S

that would be roughly equidistant on a log u plot. A large number of measurements

were clustered at low flow velocities to ensure a good estimate of r As the flow

rate was increased, care was taken to stay within the operating ranges of the

flowmeters and pressure gages. The adapter block was occasionally removed for

measurement of the sample length so that the compression effects could be

accounted for at a later time. The experiment was completed when the range of the •

available pressure gages and/or flowmeters was exceeded. The sample was then

discarded and the tube repacked.

4. Compensation for Porosity Changes 0

The purpose of the static flow resistivity test is to determine the

resistivity of a sampie as a function of flow speed. Implicit in this statement is the

understanding that the frame is rigid, i.e., R2= constant. Unfortunately, because the

static flow test operates far below the decoupling frequency, the material' is

compressed by the flow, i.e., the sample length L is dependent on the velocity as

L(u). As the sample compresses, the porosity is reduced and the resistivity of the

material changes. These compressions do not take place for signals which, as in our

experiments, ile well above the decoupling frequency. The subject of this section is

a method of compensating the resistivity measurement for sample compression.

The velocity dependent porosity fl(u) can be determined via Eq. (4.1) if the

sample length L as a function of velocity is known. The sample length was measured

for several velocities during the experiment, but the limited number of discrete data

points obtained is hardly sufficient to define a function L(u). We therefore use the

method of cubic T-splines as developed by Foreman 2 6 to generate an approximate

curve from the discrete length data. The advantage of Foreman's method is that it
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minimizes spurious curve "oscillations" and other inaccuracies caused by the

inadequacy of a cubic polynomial fit.

In order to distinguish between resistivity changes due to sample com-

pression and those due to the expected amplitude dependence, we develop a model

which describes the changes in cesistivity with velocity and porosity. Hersh and

Walker have determined the functional dependence of the linear resistivity rI on

porosity to be S

rl(Q) = 3 /24--- -0 (4.2)

(4 FIT)

where m is the dynamic viscosity, d is the fiber diameter, and g is an empirically

determined constant of the material. From our data we calculate the average value

of g for batted Kevlar 29 to be roughly 0.065. Kuntz's data imply a value of about
13 "-

0.062, and Hersh and Walker reported a value of 0.059. We have used a

compromise value of g=0.063 throughout these calculations. The nonlinear resis-

tivity r 2 also changes with porosity, but its functional dependence has yet to be

determined. We have observed, however, in Kuntz's data and our own, that the

value of r 2 seems to be related to rI by a simple constant for a given material for a

number of porosities. If we call this constant h, the resistivity can be determined

from known values of r1 , 0,and h:

r(S2,u) = r(Q) (1 + h u )

A more general form, which favors neither Eq. (2.9) nor Eq. (2.10), is

r(S2,u)=rl(Ql)f(u) ,(4.3)..
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where the coefficients of the polynomial f(u) are porosity independent constants of

the medium. For our experiment the porosity was a function of velocity NO(u), so

that our measured resistivity data is assumed to obey the relation

r meas.(W (u), u) = r l(2 (u)) f (u) (4.4)

If the sample had remained rigid, the data would have obeyed the relation

r (9 (0), u) = r 1(S2 (0)) f (U) ,(4.5) .

where f2 (0) is the nominal porosity before any flow is applied. In order to adapt the

data from a compressed sample to an ideally rigid one, the two relations are

combined to eliminate f(u). The rigid sample data is therefore related to the

measured data by

r I meas. ( . (4.6)

Note that the explicit form of f(u) is unimportant here; it is sufficient merely to

acknowledge its existence.

D). Experimental Results and Comparison with Data

This section is the confluence of the theoretical work of Chapter 3 and

the experimental work of Chapter 4. Here we examine the correspondence between

theoretical predictions and the experimental observations. The dc resistivity data is

discussed first, since the resistivity properties of the medium are needed as inputs

for the predictions. The acoustic data is then discussed in the same order followed

in the theoretical discussions of Chapter 3: propagation of small-signal waves,

finite-amplitude tones, and finite-amplitude distorted sinusoids.

84

. t ., . ._. , ' ; " --, , n-:', , m, ,a"- -- '' ' ' " . . . " "- . .. - "" "": ' " " 0



1. Resistivity

Resistivity data for six samples, adjusted for sample compression, were

fitted to the u sgn(u) model, Eq. (2.9), and the u2 model, Eq. (2.10), by the method of

curvilinear regression. The quality of fit, as measured by the mean squared '

deviation of the data from the fitted curve consistently favored the u sgn(u) model

(see Table B- I in Appendix B). A plot of some typical resistivity versus flow

velocity data is shown by the circles in Fig. 4-5 (see also Fig. 2.-I). The data are

somewhat scattered at low flow velocities because our equipment is less accurate

for very small values of u and Ap. The calculated values of the constants rI and r2

for the samples are shown in Table 4-1, along with the calculated values of the

empirical constant g and the "relative nonlinearity" ratio r 2ci/rI. The sample

numbers were assigned in the order in which they were tested.

TABLE 4-I

Resistivity properties of porous samples

9l rlI r2 '

Sample (nominal) (mks rayl/m) (ray sec/m 2) g r2 ci/r I

1 0.94 50233 6715 0.066 38.9

2 0.98 10437 3261 0.071 90.8

3 0.96 29789 6831 0.062 66.7

4 0.94 51539 12708 0.064 71.7

5 0.96 28601 6904 0.066 70.2

6 0.94 52891 11354 0.062 62.4

7 0.96 28784 6294 0.065 62.7
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An illustration of the power of the compression compensation algorithm

can be found in Fig. 4-5. The triangular symbols represent the raw data prior to

*- correction for sample compression. The porosity of the sample remained constant

at the value 2=0.96 for flow rates below I m/sec. For higher flow rates, however,

the sample compressed quite a bit: a flow rate of 1.73 m/sec reduced the porosity

of this particular sample to 2=0.946. The uncompensated resistivity datum at this

flow velocity was actually 62,139 rayl/m before the algorithm reduced it by 35% to S

40,538 rayl/m, where it falls right into line with the pattern set by the lesser flow

rates. The remarkable consistency of the corrected points with those for which the

sample was in fact rigid implies that the assumption underlying Eq. (4.3) is valid. 5

Adjustments made to resistivity data were similarly successful for all samples for

which there was adequate L(u) information, save one. The exception was sample 2

which, because of its very high porosity (=0.98), compressed to about one third of 5

its initial length. The cubic polynomial curve fit was simply insufficient to match

the length data.

Five of the seven samples studied had very consistent properties. Sample

1, for no apparent reason, had a much lower relative nonlinearity than the others.

2. Small-Signal Tests

Attenuation and phase velocity predictions of Section 3.B were tested by

measuring the change in SPL and phase of a propagating tone as a function of

distance through the sample. The attenuation determined therefrom is plotted

versus requency and compared to predicted values in Fig. 4-6. The phase speed

measurements and predictions are shown in Fig. 4-7. In both figures the solid lines

represent predictions based on Eq. (3.23). The dashed line in Fig. 4-7 represents the

isothermal sound speed value. Low frequency predictions agree well, but as the
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frequency is increased the predicted phase velocity and attenuation curves diverge

from data. Preliminary calculations indicate that most of the discrepancy could be

removed by introducing a frequency dependent sound speed and a structure factor

(see below). We have no explanation for the slight discontinuity in the data near

1750 Hz in both figures.

6Ai Recently published work by Lambert and Tesar 7 apparently makes it

possible to obtain an a priori value of the structure factor and the frequency

dependent bulk modulus from resistivity tests no different from those discussed

0 here. Lambert and Tesar's theory is somewhat involved, but predictions of the

small-signal phase speeds and attenuation constants for Kevlar R29 are accurate over

a wide range of porosities. Indeed, if their work had been published earlier, their

formulations of the structure factor and frequency dependent sound speed would

probably have been incorporated in the present study. The behavior of these

properties at high intensity remains, however, unknown. Nevertheless, predictions

based on our simple theory are, by demonstration, reasonably accurate and have the

advantage of being substantially less complex. A more detailed comparison of the

two approaches, including application to nonlinear effects, would be a good idea for

a future study.

The attenuation data serves as a check of the assumption that r1 is the

same for ac and dc flows. Table 4-2 compares the linear resistivity coefficients for

ac and dc flows for six of the samples tested. Data taken at low frequency (where

our theory is highly accurate) yield estimates of the value of ri which are

consistently lower than their dc counterparts by a few percent. The agreement is

good enough, however, to validate our assumption that the ac and dc resistivities are

equivalent for small signals.
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TABLE 4-2

Comparisc;n of measured static flow and acoustic resistivity

£ rldc r ac

Sample (iominal) (mks rayl/m) (inks rayl/m) A%

1 0.94 50233 48831 -2.8

2 0.18 10437 9895 -5.2

3 u.6 29789 29054 -2.5

4 0.94 51539 48395 -6.1

5 0.96 28601 27059 -5.4

6 0.94 52891 50898 -3.8

3. Finite-Amplitude Tones

We now disc, iss the SPL and relative phase data for finite-amplitude

tones. The finite--amplitude signal at the reference microphone is not a pure tone,

but rather a distorted sinusoid. Here we are concerned mainly with the fundamental

and assume that the harmonics are small and have a negligible effect on the SPL of

the fundamental. Theoretical predictions from Chapter 3 lead us to expect excess

attenuation and a reduction of the phase velocity at high amplitude. In other words,

a finite-amplitude tone behaves as a primary, as defined in Chapter 3. The

nonlinear behavior is thought to be caused by the local increase of resistivity due to

the passage of the wave. A good example of data that show excess attenuation is

found in Fig. 4-8. The data is taken for sample 2, for which the porosity is Q =0.98.

The three data sets correspond to three initial source amplitudes, and the dashed

lines represent small-signal attenuation. No prediction curves have been included

here because the tabulated value of r 2 for this sample is considered inaccurate.

This data set contains the most pronounced excess attenuation we measured. The
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explanation is that the lower small-signal attenuation rate allows the wave to

remain strong for a longer period. The nonlinear effects are therefore relatively

more important than in other samples.

The other samples we tested showed very little excess attenuation (see,

for example, Fig. 4-9) because their small-signal attenuation rates were large and

our maximum source level was only 160 dB. (By using source levels of up to 170 dB,

Kuntz I was able to obtain large excess attenuations over a wide range of porosities.)

The three data sets in Fig. 4-9 once again correspond to three initial source

amplitudes, but this time predicted propagation curves are included for each. At

low intensity the predictions match the data well, but as the intensity is increased

the expected amount of excess attenuation is exaggerated by the approximate

solution. This is an example of the tendency of the approximate solution to

"overshoot" as discussed in Chapter 3. Calculations have shown that the second

derivative term discarded from Eq. (3.27) is more important than had originally been

thought. Because of the inaccuracy of the solution, we are unable to

determine whether r 2 is the same for ac and dc flows. If the solution were exact,

the validity (or lack thereof) of the measured static flow value would be immediate-

ly apparent. Unfortunately, the solution is inexact. It was hoped that the

measur ments could be used as a test of the theory and, in particular, a check on

the assumed value of r 2 , but since the solution of Eq. (3.29) misrepresents the

theory, no direct assessment of the accuracy of the static flow of r2 can be made.

Nevertheless, the excess attenuation behavior is at least qualitatively predicted and

is compatible with the concept of nonlinearly augmented local resistivity.

Measurements of the relative phase between two points in the wavefield

indicate quite strongly that the phase speed of the pressure wave is a function of the

wave amplitude. The relative phase is defined as the difference in phase between
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the signals at the reference and a downstream point, i.e., oA=¢(x)-o(O). An

increase of the relative phase corresponds to a decrease in the phase velocity.

Figure 4-10 is an example of some typical data. The solid curve represents

predicted values of the relative phase as a function of SPL. Abscissa values

represent deviations of the relative phase from the predicted small-signal value

Ass that is,

A0graph = 0(x) - 0(0) - . S

Vertical offset errors due to inaccurate predictions of q are present which

complicate the picture somewhat. However, the shape of the curve is a generally

dependable measure of the change in phase velocity.

The measured relative phase data did some things we expected, and others

we did not. As the SPL was increased, the relative phase usually decreased at first,

but always increased at higher levels. The decrease took many forms; sudden jumps

were as common as gradual changes. The overall tendency of the relative phase to

increase with SPL is compatible with the concept o;f augeieted tesistivity, because

the data show that the phase velocity of the pressure wave was reduced at high

amplitude. The decrease in the relative phase was totally unexpected. Small

hysteresis loops were also observed; that is, the data followed a different path

depending on whether the SPL was increasing or decreasing. The anomalous

decrease, sudden jumps, and hysteresis behavior suggest a nonlinear bistability for

which the local stochastic variation of the quantities r I aicd r 2 causes there to be

more than one possible wave number at high intensity.

The skeptical reader might suspect that the hysteresis behavior was

introduced somewhere in the measurement apparatus. The measurements were

repeatable, however, for various microphones, microphone positions, frequencies,
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and even different FFT analyzers. We therefore believe the measurements to be

true representations of actual acoustical events.

We conclude from the finite-amplitude tone measurements that atten-

uation is indeed increased and phase velocity reduced at high amplitude. The

approximate solution gives good qualitative predicions for both. Although we

should have liked to draw a conclusion concerning the values of r 2 for ac and dc

flows, the inherent inaccuracy of the approximate solution prevents us from doing

so. We are therefore unable to confirm or deny our initial assumption that the dc

and ac resistivity are interchangeable at all particle velocities.

4. Distorted Sinusoids

Having finished with the fundamental, let us now concentrate on the

higher harmonics of the signal. The higher harmonics generated by the propagating

fundamental are no longer neglected, nor are those present at the reference

position. Analyzing the behavior of the higher harmonics gives us information about

the form of the r(u) function. A computer program was written to numerically solve

Eq. (3.29) for periodic waves. A cubic distortion pattern is predicted and the

harmonic propagation curves are predicted to cross. Figures 4-11, 4-12, and 4-13

give measured and predicted harmonic propagation curves for three different

samples. In each case, data for the fundamental show that it behaves essentially as

treated in the previous section. In fact, the small difference between the analytical

(see Fig. 4-9) and numerical solutions for the fundamental demonstrates the minimal

effect of the higher harmonics on the fundamental. The SPL of the second harmonic

is seen to decrease monotonically with distance just as the SPL of the fundamental

does. Therefore the second harmonic also functions as a primary. The third

harmonic SPL, however, increases initially and routinely equals or exceeds the level
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root function is not distributive. Even though we prefer the sgn(u) formulation (as S

discussed extensively in previous chapters), we use the quadratic form of the

resistivity in preparation for a perturbation solution.

Since the porous material is assumed isotropic the one-dimensional 0

particle velocity u can be replaced by its vector counterpart,

pt + PO - = 0 (6.1)

The nondimensional continuity equation, expressed in vector notation, is 5

A 0 (6.2)

and the momentum equation becomes

+ +Ra +R (( . ; 0 , (6.3)

where the vector form of the quadratic nonlinear resistivity R 3-° has been used.

The wave equation is found by adding the results of the operations -iN on the 0

continuity equation and ala T on the momentum equation:

v. - RI+R v + R3  T.) = 0 (6.4)

This equation is awkward in vector form and has the added disadvantage of allowing

rotational solutions. Since we are interested in scalar fields describing irrotational

motions, two modifications are made: the velocity vector is first replaced with the e

gradient of the scalar potential field V

T R OT + R3  • = 0 (6.5)
3 0(10

and the divergence of the result is taken to reach the scalar form

V2 - V 2 0RI) R 3 ((T)2RVO )(0 • =0. (6.6)

I11

114.
._ : . .. . ' -'" " , " " " " " -, " -' ' l . .. " i " 'i " -



CHAPTER 6 0

THEORY OF LINED DUCTS

A. Introduction

Chapter 6 is an application of the accumulated knowledge of the fore-

going chapters to the problem of a lined duct. We are particularly interested in the

effect of the material nonlinearity on the absorptive power of the duct. We begin

by deriving a nonlinear nondimensional vector wave equation for acoustic waves in

the material. Next we investigate the process of nonlinear reflection from a porous

half-space. Lastly, a third order perturbation solution for a lined duct is prepared,

but is never executed because of its forbidding complexity. Instead, we propose an

ad hoc model to aid in understanding the nonlinear effects.

i. Nonlinear Nondimensional Vector Wave Equation

In previous chapters the nonlinear resistivity was calculated assuming

one-dimensional flow. In order to consid , a lined duct, however, a general

expression for the resistivity is needed. In particular, we are interested in finding

vector expressions to replace Eqs. (2.9) and (2.10) for use in a vector wave equation.

2Of the two previously used forms of the nonlinear resistivity u sgn(u) and u , the

former represents the instantaneous speed of the flow and the latter the square of

the velocity. It turns out that the square of the instantaneous particle velocity can be

expressed in vector terms as 6.u = rul 2 . The vector form of Eq. (2.10) therefore

lends itself rather well to a perturbation method of solution. The instantaneous

particle speed is of course ,.. An expression of the resistivity based on this form,

however, does not allow a perturbation solution because the square

P1R EV IOUS 
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Three topics are suggested for future study. First, there is a definite B

need for more accurate solutions of the infinite set of coupled second order

inhomogeneous ordinary differential equations represented by Eq. (2.26). Second,

the accuracy of theoretical predictions may benefit somewhat from a more

elaborate model of the material which includes structure factor and a frequency

dependent sound speed. Furthermore, the change in these parameters dt high

intensity should be studied. Third, since the material is likely to be used in an S

inhomogeneous state, the effects of the inhomogeneity should be investigated.

The theory developed here was originally intended to be applied to the

problem of absorption of high intensity sound in a lined duct. Theoretical work on S

this topic is already being pursued by this author. If point- and local-reaction

models of duct liners are to be used with confidence, it will be necessary to

establish the validity of amplitude dependent impedance expressions derived in this S

work. Despite the difficulties encountered, the theory we have developed appears

to offer the best hope for solving the important and practical problem of high

intensity sound absorption in lined ducts. S

-. - . .- . . . ", . . ... . . ,



On the basis of the qualitative and quantitative agreement between the

theory and experiment, we conclude that

1) the resistivity is the dominant mechanism for acoustic loss and

distortion in a porous material, 0

2) the inathematikal form of the reLisivit- function is r=r I+r 2 usgn(u)

for static flows and is retained for acoustic flows, and

3) the value of rI is indeed the same for ac and dc flows, but

4) the agreement between the value of r2 for ac and dc flows cannot

be determined because solutions are inaccurate for finite-amplitude

waves. 0

Two phenomena were observed which suggest modifications for future

theories. Small-signal measurements indicate that the accuracy of the theory would

benefit somewhat from a more sophisticated model in which the sound speed were

allowed to be frequency dependent, and a structure factor were included. However,

there is currently little knowledge available on the variation of these parameters at

high intensity. The second phenomenon is the hysteresis loops that were observed in

the phase speed versus amplitude data. The nonlinear bistability implies that local

stochastic variations of the material resistivity, i.e., material inhomogeneity, may

be important at high intensity.

The experiments had two basic shortcomings. First, the static flow test

compressed some high porosity samples so much that even our otherwise highly

effective compression compensation algorithm could not account for the changes.

Use of lower porosity samples solved the first problem but led to the second: the

source amplitude was not high enough to observe significant excess attenuation for

all the porosities tested. Results of future experiments will be more conclusive if

these two problems can be solved.
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measurements were attempted. Quantitative agreement ranged from satisfactory 0

to excellent.

(1) Low intensity attenuation and phase speed measurements were in

very good quantitative agreement with predictions based on the

measured dc value of ry; at low frequency (< 1500 Hz) the agreement

was excellent. We therefore surmise that the dc and ac values of r

are the same. 0

(2) Measurements of sound pressure level versus distance at high

intensity showed some excess attenuation, but in general we

observed much less than was predicted. The assumptions on which 0

Eq. (3.29) is based were apparently more easily violated than we had

expected. It was hoped that this solution could be used to

demonstrate the equivalence of r2 for ac and dc flows, but the 0

inaccuracies prevent us from drawing a solid conclusion. Never-

theless, the dc value of r2 seems to be at least approximately

correct for use with acoustic signals. The relative phase data

deviates from predictions as a result of a process which we suspect

is a nonlinear bistability induced by the inhomogeneity of the

material. The predicted increase in relative phase (a decrease in

phase speed) appears, however, consistently at high intensity.

(3) The existence of cubic distortion is compatible with both a u 2sgn(u)

3 0or u nonlinearity. The gross details of the harmonic propagation

curves are very adequately predicted; for the most part the pre-

dictions are within 5 dB of the measured data.

I 09
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functions of frequency. Measured attenuations for all samples were of the order of

hundreds of dB/m and increased from low values at low frequency towards

asymptotic values at high frequency. Phase speeds were substantially reduced at

low frequency and increased to near the isothermal sound speed at high frequency.

At high intensity, measurements ot the SPL of the fundamental with distance

showed a small but significant amount of excess attenuation. Because of the limited

power-handling capacity of our acoustic source, however, the saturation region was

out of reach. The approach to saturation has been much better documented by

Kuntz. The relative phase of the fundamental between the signals at two positions

was measured as a function of amplitude. An increase in relative phase corresponds

to a decrease in the phase speed. The measured relative phase was stable at low

intensity, usually decreased slightly as the amplitude was increased, and always

finished with a strong increase at the highest SPLs tested. The decrease was not

always gradual, but often involved sudden jumps of several degrees for a source

level change of I dB. In addition, small hysteresis loops were observed in the

relative phase data. Finally, the harmonic distortion pattern was indeed observed to

be cubic, that is, the first and second harmonic both behaved like "fundamentals";

that is, they decreased monotonically in strength with distance. The third harmonic

SPL, by contrast, was observed to routinely exceed the amplitude of the second. •

The fourth and fifth harmonics often increased initially in strength as well. Such a

distortion pattern could not be caused by a hydrodynamic distortion mechanism and

is solely attributed to nonlinearity of the porous material resistance.

We now compare the theoretical predictions and experimental obser-

vations with a view towards evaluating the validity of the model. Excellent

qualitative agreement was obtained for all predicted phenomena for which
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summarized in the statement that the mean resistivity increases with the wave

amplitude. Finite-amplitude tones are therefore predicted to have higher atten-

uation rates and impedances and lower phase speeds than small-signal waves of the

same frequency. Saturation behavior is predicted at very high intensities; i.e.,

nonlinear losses determine the maximum pressure amplitude which can be reached

at a given point in the wavefield.

Numerical solutions of Eq. (3.29), including all harmonics, are perforined

by a computer program written for this purpose. Predictions based on this solution

lead us to expect a cubic harmonic distortion pattern in which the fundamental

energizes the third and higher odd harmonics. The second harmonic is predicted to

behave as a fundamental as well and to directly energize every other even harmonic,

that is, the sixth, tenth, fourteenth, etc. The fourth harmonic and multiples thereof

are products of the interaction between the first and second harmonics. 5

Several experiments were performed to investigate the propagation of

finite-amplitude sound in porous materials. A traveling wave tube filled with a
p

porous sample was fitted with six microphones, a compression driver, and extensive

electronic devices for the acoustic measurements. The tube, with the same sample

intact, was reconfigured with pressure gages and flow meters for static flow

res-stivity measurements. The samples were batted Kevlar R'29 and had porosities

9=0.94, 0.96, and 0.98. Small-signal measurements were taken in the frequency

range 400-6200 Hz. Finite amplitude measurements were conducted at a frequency

of I kHz. Sound pressure levels of up to 160 dB (at the reference position) were

used.

Experimental results were in general consistent with predictions.
S

Measurements at low intensity showed the attenuation and phase speed were strong
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completely overshadowed by both the linear and nonlinear resistivity effects and are

neglected. The isothermal sound speed is used for all frequencies. We have

therefore established the resistivity as the prime mechanism for attenuation and

distortion of acoustic signals in porous materials. The apparent lack of sophis- p

tication of the model respresents a deliberate retreat from more elaborate theories;

the simplified theory has the advantage of being easily extended to include finite

amplitude behavior. 0

A nonlinear wave equation, Eq. (2.23), is derived from the model. The

wave equation has a relatively uncomplicated form, but turns out to be very

difficult to solve in the general case. Transformation to the frequency domain

produces an infinite set of coupled inhomogeneous Helmholtz equations, one for

each harmonic.

In the low intensity limit the Helmholtz equations are homogeneous and

solutions are easily obtained. Because the propagating acoustic wave is subject to

diffusion (see Chapter 2), we expect to observe high attenuation rates, severe

dispersion, and low phase speeds.

Solutions for high intensity waves are considerably more difficult to find.

An approximate first integral, Eq. (3.29), of the Helmholtz equation was derived

because numerical calculations for the solutions of the second order Helmholtz

equations (Eq. (2.26)) were unstable. Two different approaches were used to solve

Eq. (3.29). In one the higher harmonics were neglected entirely and in the other the

higher harmonics are taken into account. Using the first approach we are able to

obtain an analytical solution from which expressions for impedance, and the

amplitude and phase speed of both the particle velocity and pressure waves are

found. All of the many informative results obtained from these solutions may be
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CHAPTER 5

CONCLUSIONS [JR CHAPTERS 1 THROUGH 4

SD
The propagation of finite amplitude sound in rigid air-filled porous

materials has been studied both theoretically and experimentally. In particular we

have studied the effects of amplitude dependent resistivity on propagation of

acoustic signals. Experiments performed on batted Kevlar 29 are in at least

qualitative, and in man), cases quantitative, agreement with the theoretical predic-

tions.

The theory is based on the following model of the porous material: the

material is rigid, incompressible, and homogeneous and has only two important

properties, porosity S2 and resistivity r. Detailed knowledge of the material

geometry is unnecessary for this model. The resistivity has been measured for dc

flows and is shown to be the following function of flow velocity u: r=r I+r r2 usgn(u)
(see Eq. (2.90) ]  Previous work by other authors 1 3 2  shows that the static flow

resistivity function may be applied to oscillatory (acoustic) flows. The components

of the flow resistivity play two different roles. The "linear resistivity" r1

determines, among other things, the small-signal attenuation, which in a typical

porous material is quite severe. The amplitude dependent resistivity leads to strong

nonlinear effects, namely excess attenuation and harmonic distortion. The effects

of hydrodynamic distortion, which normally give rise to shock formation, are

*tThe 2. sles ""-
model of Eq. (2.10), r=rI+r 3u2, is far from useless; a discussion of results based

on this model is given in Appendix B.

PREVIOUS PAGE AM&
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In addition, two results have been obtained which, although not con-

d clusive, are considered trustworthy and merit further study:

1) the resistivity can be separated into functions of porosity and flow

velocity as r=r (Q2)f(u), where the as yet unspecified coefficients in

I
°

I

the function f(u) are independent of porosity,

2) an apparent nonlinear bistability has been observed which indicates

that the local stochastic variation of the material properties may be

of importance at high intensity. S

We have not been able to detemine whether the value of r 2 is the same

for ac and dc flows because of the inaccuracy of our solution.
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physical boundary, the material/air interface, which is not located at X=0. The nth

component at x =0 is partly due to energy upshifted while traveling from the physical

boundary at the reference position. Since the waves represented by the two parts of

the solution travel at different speedst the upshifted signal is occasionally out of

phase with the signal represenred by the homogeneous solution. Destructive

interference takes place, and one and occasionally more spurious cusps may appear

in the predicted propagation curve for a harmonic. 0

E. Summary of Experimental Work

As a test of the validity of our theory, we have performed a series of

experiments to examine the behavior of acoustic signals in batted Kevlar 29 at low

and high intensity. The following five conclusive results have been obtained.

1) The static flow resistivity depends on the flow speed as

r=r 1 +r2 u sgn(u).

2) The value of r1 for oscillatory flows is equivalent, or nearly

equivalent, to that for static flows.

3) A finite amplitude tone undergoes excess attenuation which is

somewhat less than predicted.

4) A finite-amplitude tone propagates more slowly than its small signal

counterpart.

5) The harmonic distortion pattern has cubic character.
2

Although point (5) admits both the u and sgn(u) resistivity models, the evidence

from (1) implies that the sgn(u) model is correct.

tConsider that the harmonic tends to travel at C pn while the primaries, whence

comes the inhomogenous part, travel at C and C PI p2*i
102 "
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of the second harmonic. The upshifted energy from the fundamental skips over the

second harmonic and reinforces the third. As a result, the propagation curves for

the second and third harmonics may cross. This is a distinguishing mark of the cubic

distortion pattern which was discussed in Chapter 3. An ordinary quadratic U

nonlinearity, such as that for hydrodynamic distortion or that assumed by Kuntz,

would cause the second harmonic to behave as a distortion product rather than a

primary. A quadratic nonlinearity does not therefore fit the distortion patter; a
observed here. Data for the fourth and fifth harmonics indicate that both receive

significant energy from the primaries. Their behavior, however, neither confirms

nor denies a cubic distortion mechanism.

The predicted harmonic propagation curves are in substantial agreement

with the data. Predictions of the SPL of the fundamental and second harmonic are

too low because the numerical solution exaggerates the nonlinear effects. The

overshoot phenomenon has a different effect on distortion product predictions.

Since the solution exaggerates the nonlinear effects, the approximate solution tends

to overestimate the amount of energy received by a distortion product and thus

overestimates the SPL as well. The error is balanced somewhat, however, because

the approximate solution also underestimates the strength of the primaries which

drive the distortion products.

Prediction curves for the higher harmonics, especially those that receive

a great deal of upshifted energy, often have cusps (see n=5 curve in Fig. 4-11). The

cusps are artifacts of the solution procedure. The cause lies in the fact that the

differential equation is solved for initial conditions at the reference postion X =0.

The inhomogeneous part of the solution, representing energy upshifted from the

primaries, is set to zero by the computer program at this point. I. reality, the

upshifted energy is nonzero at the reference position: it is only zero at the true
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LThe frequency domain version of this equation is found by substituting for

the potential in the by now familiar manner to give

2 2 22
v2(V +  ). = -jn R (V2 p +0 VqpV)(VMq• n.pq) (6.7)

pq

where

.0 =~~ (X) exp(jnt)
n

and
(i)O-n : On*"

The perturbation solution is prepared by expressing the nth frequency

component of the potential field as

On = E0nI + E 3n3 0 (6.8)

where only the first and third orders are represented because the second is

homogeneous and therefore redundant with the first. The value of 4 will be

specified later. Substitution into Eq. (6.7) and grouping by powers of epsilon gives

the following relations:

V 2 (V2 + qn2)0nl = 0 (6.9)

and

(V+ qn2) 0n3 = -Jn R 3 Z(V 2 p +VOpl. v)(10ql * V(n-p-ql)  (6.10)
p q

Once the first order field is specified, the third order field can be found by

operational integration.

* Later we find that the perturbation technique is very awkward for

application to the problem of lined ducts because of the enormous complexity of the

nonlinear interaction of the wave fields. The perturbation solution nevertheless

serves to illuminate several interesting physical processes including
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reflection of an intense wave from a porous half-space as discussed on the next

section.

C. Reflection from Porous Boundary

1. Small-Signal Problem

The problem of the reflection of sound from a porous material is

interesting for low intensity sound waves, but the inclusion of the effects of

material nonlinearity leads to some surprising phenomena. It turns out that at high

intensity the wave reflected from a porous surface does not have the same spectrum

as the corresponding incident wave. This prediction relates directly to experimental

observations made by Zorumski and Parrot. 2 7  The following investigation is

predominantly theoretical in nature.

The wave equation is very complicated, but still lends itself to a

workable, if somewhat tedious, perturbation solution. To begin the problem, we

first define two potential fields: 0A in the air and OA in the material. They of

A M
course have the frequency domain manifestations 0 n and 0 n These fields are

further broken down as

A A 3 A
EQ (611aOn =Ent + E n3 + . .  la

and

M M 3 M(
n= En + Qn3 + '

.*
'  (6.llb)

where E is the magnitude of the potential function of the incident wave. Since

nonlinear effects in the air are neglected, the Helmholtz equation for the air is

homogeneous. We shall see, however, that it is still necessary to retain the third

order solution in the air because it represents energy which is radiated from the

material surface. The first and third order Helmholtz equations are:
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2+ n)2 0 0 (6.12)

and

+ 0 n3 =O (6.13)

In the material, Eqs. (6.9) and (6.10) apply. To further complicate matters, the wave

fields in the air are composed of incident and reflected waves,

A A A (6.14)
Onk = OnkI + OnkR

The material is assumed to be of semi-infinite extent, so that the wave fields are

composed solely of transmitted waves,

M M

Onk = QnkT (6.15)

The conditions that pressure and mass flux must balance are invoked at

the boundary. The pressure boundary condition is written in potcntial form from the

equation of continuity: the substitution of V0 for _v yields

Pt V2= 0 (6.16)Pt +  =

and in the frequency domain this expression becomes

A 2
jnP n = .Vn (6.17)

Equating the pressures on either side of the boundary at X = 0, we find that

2 2=VAOnk (6.18)nkI =0 =V =0 L

Since the density of the air does not change across the boundary, the boundary

condition for the conservation of mass is simply that the volume velocities match.

In the air the volume velocity is 5

""-"0 A '/

.- a Onk,.
a-X-- X=0
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03

and in the material M
A =nk -

ax X x=0

where A is the cross-sectional area of the boundary. The second boundary condition

is therefore

Ank a (6.19)

ax 1=0=0

The first order wave fields are defined as follows:

A A exp (cos0nX +sin 4, (6.20)
On11 ni n nnI = Anl exp l j (-•s

OR n  x f XP (cos0 n X +sinO n ) , (6.21)

and

0MT=Cnlep(j(qnx +qn4)) , (6.22)

2 2 2 S

where q 2 = q The situation is depicted in Fig. 6-1, where X is the coordi-

nate normal to the surface and 4 is the coordinate parallel. The algebraic

manipulations encountered in applying the boundary conditions are tedious and not

very informative; hence we simply show the results. The small-signal pressure

reflection coefficient p n( ) is equivalent to B /A , which is
nn n I nil

2
Bnl -/--qn cosO -nq n X

nn'On) A 2 (6.23)
ni f-qn cos0 n + nqn× -XS

The pressure transmission coefficient t (8n) is simply equivalent to one plus the
n n

reflection coefficient or
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2,f-- q2 Cos On

t (a n n(6.24)
tn (On )= . q2 cosOn + nq(

The value of C /A is not equal to t (0n), however, butni ni n n

C n = n2nl ;n t(O) . (6.25)
Anl 'yqn2

The magnitude of the transmitted waves, whence comes the nonlinear part of the

solution, is determined by the value of C nl/Anl

The angle of the phase fronts within the material is defined by

- I Re [q n] (6.26) S
On =tan-  ReRn ]._

where

lqn = q2 n2 1y sin2 o

and

nq n - sine (6.27)

It is important to note that the angle of travel within the material is frequency-

dependent for all angles of incidence except normal incidence. Since low frequency

waves have lower phase speed in the material (see Fig. 4-6), they are refracted

strongly. High frequency waves, on the other hand, are refracted less. An incoming

signal with a rich spectrum therefore fans out into its respective components as a

consequence of the severe dispersion in the material. The complete first order field

in both the air and the material can now be defined from the values of Anl and en.

nI 'n.
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2. Nonlinear Reflection and Refraction

In this section we seek practical insights into the problem of reflection of

high-intensity sound from porous materials. This work is done in preparation for the

solution of the lined duct problem, and to help us understand some of the vagaries of

that problem. Here we merely prepare the theoretical tools necessary for explicit

solution of reflection problems; we choose to concentrate on explaining qualitative

results for instructive cases.

We first define the third order wave fields for the reflected and

transmitted waves:

AS
An3l = 0 (6.28)

0A Bn 3 exp(- n/Y (-cos 03 X +sin 0n} )) , (6.29)

and

Ofl3T Cn3 exp (q + 3X 3 (6.30)

where, for a nonlinear interaction involving the rth, sth, and n-r-sth harmonic

components, the following relations apply:

qn x3= q r + qsx + qn-r-sx (6.31)

q 3 qr + qs4 + qrs4 (6.32)

0 n3 = i [(l/n) (r sin or + s sin Os + (n-r-s) sin Onrs)] (6.33) 5

121

9o



and (Xn3=tan-1 (Re [q1n] / Re [qnx3] N(6.34)

The third order incident wave field is identically zero because the nonlinearity of

the air has been neglected. The subscript 3 attached to variables in the following

discussion indicates that they apply to the third order solution. In many cases we

will study, the travel directions and wave numbers for the third order waves are

redundant with those of the first; but in order to be sufficiently general, the explicit

expressions are given.

It is clear from Eq. (6.10) that the third order transmitted field is nonzero

for at least some harmonic components of an intense wave. Since the same

boundary conditions apply for all orders of the solution, it is necessary that a

component generated in the material by nonlinear effects must be balanced by a

component in the air, which then radiates from the surface. This means that the

reflected wave field carries with it the imprint of the nonlinear interaction which

takes place inside the material. Observations made by Zorumski and Parrot 27

corroborate this prediction: while studying the reflection and transmission of sound

through thin porous sheets, they observed that the reflected wave field for an

incident pure tone contained a strong third harmonic.

The first nonlinear case we consider is that of an intense pure tone

incident on the material at some angle OI, as depicted in Fig. 6-2! The transmitted

fundamental follows the angle , which is determined from Eq. (6.26). The third

order field contains two components: a correction to the fundamental proportional

Circled numbers denote intense harmonic components.
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to 0 l and a third harmonic distortion product which comes from Ol. Distortion

products such as these will be referred to as "products of self-interaction," because

the nonlinear interactions by which they are produced involve only one frequency

component. It is interesting to note that these distortion products travel in the

same direction as the primary (in this case the fundamental) from which they

originated. It is easily shown that

q3X3 = 3qI and q3 I 3 = 3q, and therefore IP33 = 4I 1

and

qlX 3 =ql andqI 3 =q, and therefore 4 13 = +t.

This leads to a second observation: products of self-interaction travel collinearly in

the material with the primary from which they are generated. It is also of interest

to note that the angle *33 e 413' In other words, the nonlinearly produced third S

harmonic travels in a different direction from one that originates outside the

material. Furthermore, the angle which the distortion products take on emerging

from the material is equivalent to that for the emerging primary which energized S

them. This is easily seen from Eq. (6.33). If the solution were carried to higher

order, all of the odd harmonics would be represented in the transmitted and

reflected waves, and all would be collinear within and without the material. S

The reflection coefficient of the fundamental is affected strongly by the

material nonlinearity. In Eq. (3.41b) the predicted dependence of impedance

magnitude on amplitude is given. Figure 6-3 shows the predictions of this equation

I
and data obtained from Kuntz, where the value of K has been selected to best fit

the data. Our predictions are qualitatively borne out. With this in mind, we use

Eq. (3.40b) using the fitted value of K to determine the normal incidence energy

absorption coefficient as a function of SPL. Figure 6-4 is an illustration of the
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severe deterioration of the absorber efficiency as the signal strength increases.

The second nonlinear case we discuss is that of an incident wave made up

of two intense components (primaries): the fundamental and the second harmonic.

Once again, these primaries travel into the material in the directions designated for

linear behavior (see Fig. 6-5). This time, however, there are six components in the

third order field. Each of the first six harmonic components is represented. The

first and third qualify as products of self-interaction, and travel collinearly with the

fundamental. Likewise, the second and sixth harmonics are direct products of the

second harmonic, and travel collinearly with the second. The fourth and fifth

harmonics, as products of a mutual interaction, do not travel either of these two

paths; they travel instead in intermediate directions. These directions can be
2

calculated rather easily. The fourth harmonic is a result of the product 0l02, and

has the wave numbers 5

q 3 =2q l  + q

and
4.l

q4 3 =2q1 4 +q 2  = ._ sinol

which gives the propagation direction

in"0

4143 tan1 (1p)i

Likewise, the fifth harmonic is a result of the product 02 2qI and has these

wave numbers and propagation directions

q5  3q4 + 2q2  k 5sin0
2S
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APPENDIX A

THERMAL EFFECTS ON SOUND SPEED

This Appendix contains an investigation of the frequency dependent

effects on sound speed caused by heat conduction between the air and fibers. The

Ibulk of this discussion parallels that given by Kuntz in an appendix to his Ph. D.

dissertation. Two assumptions are made: the wavelength is much larger than the

fiber diameter, and the fluid flow around the cylinder is laminar. The wavelength

assumption applies well beyond the range of audio frequencies and means that the

pressure forcing function is uniform throughout the region of interest. The laminar

flow assumption breaks down between 125 dB for Q=.98 and 135 dB for Ql=.94 batted

Kevlar R 29. Above this level the flow becomes turbulent and the primary mode of

heat transfer is convection rather than conduction. In a turbulent flow the

prevailing thermodynamic conditions are expected to be more isothermal than

predicted for a laminar flow model.

The flow of heat to and from an individual cylindrical fiber is governed by

the radial heat conduction equation

a2T I aT I aT dpldt
+ exp(jwt) (A.1)a r 2  r ar a at k

diffusivities. The subscript f refers to quantities pertaining to the fiber, while the

lack of a subscript indicates a quantity for air. Since the fiber is considered

incompressible and the wavelength large the total pressure is independent of range

and can be expressed as p=pexp(jwt)+po. In this case the radial heat equation is

solved by

p-VIOUS PI\GE -
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E. Conclusions

Calculation of the dispersion and nonlinear effects caused by the material

are complicated in vector notation, but addition of the inherent dispersion of a

waveguide makes a perturbation solution extremely tedious. We have, however,

managed to salvage an understanding of the gross effects of the nonlinearity on the

absorptive power of the liner. Further study is recommended into solution of the

modal wave number equations, and computational perturbation or finite-difference

solution of the nonlinear problem.
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value is determined by the initial intensity of the wave and the length of the duct,

so that the absorption hovers in the vicinity of the maximum. An algorithm is

therefore needed which integrates the total attenuation over a given length of lined

ducting (since the absorptive power of the duct changes in space because of the S

decaying wave). We suggest a ptocedure which calculates the wave amplitude and

corresponding liner impedance for successive small steps through the waveguide, and

integrates the corresponding infinitesimal attenuations. The optimal valve would S

then have to be found on a trial and error basis, since no closed form optimization

formula has been obtained thus far.
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(1-a)(n~y a P~f))( I+ __n/Y R1 _

2(n /Y +a Fq nI2 n 2/-y + a Iqj (649

Figure 6-9 is a graph of the attenuation in dB/m which is plotted against the

common logarithm of the normalized liner impedance. The graphs are parameter-

ized against the fill ratio a . There is clearly an optimum liner impedance for a

given fill ratio which yields the maximum absorption in the duct.

The magnitude of the characteristic impedance of the material has been

shown to increase for an intense wave. We can get an idea of the resulting effect on

attenuation by considering the pure tone expression for the characteristic impe-

dance of the material, Eq. (3.41a), where K is ba.ed on R2 . An alternate expression

of this is Eq. (B.Ila) where the quadratic resistivity model is used. An approxima-

tion of the attenuation rate in the duct at a given point can be found by using the S
particle velocity magnitude in either of the above equations and reading the

attenuation rate corresponding to this impedance value in Fig. 6-9.

It can be seen that increasing the amplitude of the wave does not always i
increase the absorption in the duct. In cases where the small-signal impedance is

below the optimum, a high intensity wave generally is attenuated more rapidly than

its linear counterpart. On the other hand, if the small-signal impedance is already

too large, an increase in the amplitude of the wave simply brings a further

deterioration in duct performance. Although this method of determining the

attenuation of a duct is not highly accurate, it gives a useful mnemonic for the

designer.

A duct should therefore be designed so that the small-signal impedance is

below the optimum for a given fill ratio (which is usually determined by other

physical constraints). The degree to which the impedance lies below the optimal
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S

consider the nearly-plane wave mode where a L and c L are both much less
mn A mn M

than unity. In this case, the tangents in Eq. (6.39) can be replaced by their

arguments to give
2

2 -n c (6.45) UU Yq 2

n
LA

where a - is the fill ratio.
QL 

M

It is now possible to solve explicitly for a, b, c, and d, where the lack of a subscript

denotes the nearly-plane wave mode. In essence we have assumed the duct to be

acoustically narrow, and we must therefore keep in mind at all times the restriction •

to long wavelengths which we have imposed. If used for wider ducts, the

calculations give attenuations which are much too large, since we have effectively

neglected beaming. The expressions for the wave numbers are: 5

2 2 22 _n /y(n_/v-q ) , (6.46)
a 2 n '64"

2 2n2/y + fq n I

2 2 n/yq2(l+) (6= 2 2 
n /Y + q 2

n

and

22/ 2)
rq2 n 2 y  - q n 

2 q~n nvq~n2  q2  (6.48)n2/y + -qn

We are particularly interested in the value of -Im(b), because it represents the
S

attenuation of the wave as it travels down the duct:
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I

0 expic X) G p exp(jcm3 X)) exp(-Jdmn 3 ) (6.43)Omn3p =(G m3p ex(Jm3 × ) +  m3p m3mn

M (GM + G) exp(_Jdn f (6.44+)
0 mn3H (Gm 3 H exP(-jcmn 3 X) + (6.44)

= m3H exp(JCmn 3 ' x(j~

where the two homogeneous fields ( mn3H) exist for the purpose of satisfying the

boundary conditions at 4 = 0. The wave numbers of the waves radiated into the air

space are not generally those which fit the modes of the guide, hence this set of

homogeneous modes is needed to balance the nonlinearly induced ones.

The harmonic interactions are calculated from Eq. (6.10), and expressions

for the wave numbers and mode strengths are found by applying the boundary

conditions. The number of calculations is potentially large: there will be 9M2N2

interactions, where M is the number of modes considered and N the number of

frequency components. Moreover, for each interaction a wave is produced which

does not "fit" the guide and requires balancing at 4 = 0 by a homogeneous field which

in general contains a full complement of M modes. The total number of

contributions to the wave field is therefore 9M3 N2 . This is truly forbidding, since .

the use of at least a few frequencies and several modes is essential to a realistic

investigation of a wave propagating in a lined waveguide. For example, two

frequency components with two modes apiece would require calculation of no less

than 288 contributions. Nevertheless, we are only prevented from achieving this

solution by the prodigious time and effort involved. As a research project in and of

itself this calculation is well within the realm of possibility. However, the problem 0

might be better solved using finite element techniques.

We are now forced to resort to bold approximations if we want to convey

any information about the effects of the liner's nonlinearity on attenuation. We S
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MM
aOmn[ =0. (6.38)

The two new conditions represent the requirement that there be no normal velocity

component at the walls. Upon applying the boundary conditions, we find the 0

following equation for the wave nuinb-c'r

a tan(a LA) - n c tan(cmnL M ) , (6.39)

mn mnA - 2 mn ,

where n

22 2 n q2 (6.40)
mn rnn y n

and bmn = dmn* A major complication arises at this point because of three factors:

tangents occur on both sides of Eq. (6.39), and the wave numbers are both complex

and hyperbolically related. To our knowledge, the problem of determining the wave

numbers has not been solved satisfactorily because numerical solutions of these

simultaneous equations are extremely unstable. Standard practice seems to be to

assume something about the duct liner, for instance, that it is locally reacting (see

Cremer 29). This simplifies the mathematics considerably. It becomes necessary at

a later stage for us to make approximations as well, but for the moment we assume

that the wave numbers can be found, and proceed with a third order solution for the

duct. The following four wave fields are defined:

GA  ~HA ), )(..1

mn3p m3p exp(-lam3 X) + exp(jam 3  exp()bmn3  (6.41)

A =(G A xp(-ja + H A  exp(jamX exp(-Jb (6.42)\m3H a 3  m3H m3 ) mn
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the duct liner, and lastly to include the nonlinearity of the air as well. Unfortu-

nately, this plan had to be curtailed considerably in the middle of the first phase: it

is difficult or impossible to obtain general solutions for the modal wave numbers.

After making some approximations, we arrive at an ad hoc model for calculating

attenuation of a nearly-plane wave having wavelength much larger than the duct

dimensions. A computational scheme is proposed to visualize the effects of liner

nonlinearity on the absorptive efficiency of the duct. A computer algorithm is also

suggested to calculate the optimal duct liner configuration.

We first define the waveguide geometry. The reader will recognize in

Fig. 6-8 the axes from the reflection problem. The following derivation conforms

28 8roughly to those performed by Kurze and Ver or Scott. We define two

wavefields, consisting of a wave traveling in each direction in both the air and

material: 5

0mn =(GA exp(-ja X) + H A exp(Ja mnX)) exp(-jb 4)(6.35)

mn mn mn mn mn

and

M =(GM exp(_jCmnX)+ H exp(JcmnX)) exp(_jdmn ) (6.36) 5O mn mn mR n

where

M1 =S7Mmn(Y)

The wave numbers and modal solution will be defined by the previous two boundary

conditions, Eqs. (6.18) and (6.19), plus

A
aOmn

ax =0 (6.37)

and A

133

... S:. . : .: .. .. . . , , _ , .. , _. .,, . . ..• . . . - . . , " . ' . . , . '



The emergence angles are therefore equal to

0 3 (sin-l(s 01 + sin02)

43 2 i

and/ + 4sin02 )

053 sin5 /

We see that if noncollinear incident components interact within the material, the

products of their mutual interaction in the reflected field will not propagate in

either of the primary directions, but will adopt instead some intermediate direction.

The purpose of this discussion has been to understand in a practical way

the nonlinear interaction in the material, and its effect on the wave fields inside and

outside the material. In particular we have been interested in the wave numbers and S

propagation directions of the nonlinearly induced distortion products. The fact that

signals can arrive from and depart in any direction from the material creates no

difficulties in the reflection study. Difficulties arise, however, in the lined duct

problem because wave numbers and propagation directions are rigidly linked by the

waveguide. The nonlinearly induced waves in the waveg tide guarantee that there is

a certain amount of mode conversion. The resulting algebraic tedium of the

perturbation solution of the lined duct problem renders it nearly useless.

D. Lined Duct Problem

Our original plans to solve the lined duct problem by perturbation were

very ambitious. We first intended to solve the small-signal problem of a nonlocally

reacting liner. The theory was then to be expanded to include the nonlinearity of
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-1 n 5/,1 " sin O

53 \Re[q 5 X3 1

Perhaps the most interesting point to note here is that despite the unusual

direction of travel for the harmonics (relative to their linear paths) their reflected

wave counterparts ar., sLil collinac th tflh f st ur~er reflected wave. This is

easily verified from Eq. (6.33). This brings us to another principle: if the incident

signal is collinear in the air, then neither the frequency-dependent refraction nor

the nonlinear interaction between the noncollinear elements in the material

prevents the reflected wave field from emerging in a collinear fashion.

A similar example is given in Fig. 6-6, where the case of an intense first

and third harmonic incident on the material is shown. Qualitatively, this case is no

different from the previous one, except that the third harmonic distortion product

travels in a different direction from the incident third harmonic. The result is

spatial interference patterns resembling Moire patterns.

The final example we consider is that of an intense first and second

harmonic incident on the material, but this time at different angles 61 and 02. By

all appearances Fig. 6-7 is no different qualitatively from the case in Fig. 6-5, but

an important distinction appears in the reflected wave field: some of the wave

* components are no longer collinear with the incident primaries in the reflected

wave. The reason for this is not difficult to show. The 4-direction wave numbers

for the fourth and fifth harmonics are

q q4 3 (2I\T7) (sin 0, + sin0 2 )

and

q54 3= (l/1xY-) (sine, + 4 sin0 2 ) ,
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T = ( A o(r) + B Ko(r) - p/pc) exp(jwot) + T 0 (A.2)

where K and I° are modified Bessel functions of the first and second kinds,

respectively, and = jw-a. The specific heat c should not be confused with the

phase speed presented in Chapter '. Since the thermal properties of the air and
fiber are different we define two temperature functions, T=Texp(jwt)+T ° for the air

and Tf=Tf exp(jwt)+T0 for the fiber. The subscript f will henceforth indicate a

quantity appropriate for the fiber, while the lack of a subscript indicates a quantity

for air. The temperature and heat flux are balanced at the wall of the fiber, r=a,

and the following temperature distributions are found,

(r

kt 0 I DK0(rr2!\

where D K (at) - I (a f I (atf0 k 0~'(~) o af

and

/ k___ K' (at)
Tf~k 0 ____ '- °(r f

if aP f If) +x~jt T-Pocp Dexp(jt) TO (A.4)

rsa

The value of K decays at large ranges, and I0 decays as the range is reduced to
00

zero. Temperature fluctuations are therefore largest far away from the fiber and

are usually near zero at the center of the fiber. The region in between these ranges
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contains two thermal boundary layers inside which the transition is accomplished

and the thermal losses take place. The boundary layer outside the fiber has a

thickness 6= 2g/cw and the layer inside the fiber, 6f=v2afl0w. The internal boundary

layer is much thinner than the external one and can usually be neglected. It turns •

out that the thickness of the external boundary layer plays an important role in

determining the sound speed because it influences the overall thermodynamic state

of the fluid in the pores. S

We now evaluate the average temperature fluctuation throughout a

representative region of a fluid which is filled with a multitude of individual fibers.

For this analysis we need only assume that the fibers are cylindrical and parallel. A S

spatial average of the value of T is taken over differential concentric circles

between the fiber wall and some as yet unspecified integration radius ro,

<To> 1 - <F>) , (A.5)
pc

where F D and

r•r

_______ f0 27rrKo(r )dr
<F> -7rr2-a 2) f D (A.6)"

0o a

The result of the integral is

<F> 2 (r0 KIro - (a )  (A.7)
2 2D

The average value of F is an indication of the overall thermodynamic state of the

-O fluid in the pores. When <F>=I, conditions are isothermal and the temperature
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fluctuations are very small. When <F> is near zero, adiabatic conditions prevail and

the effect of the fiber is negligible.

The integration distance is chosen so that the total integrated volume

around all of the fibers is equivalent to the volume of fluid in the pores. It was

found in Chapter 2 that the volume and area porosities are equivalent; the

expression for the porosity can be written as

SS2= I -Cra 2  , (A.8) •

where C is the number of fibers per unit area and 7ra2 the area of a cylindrical fiber.

A circle of radius r0 is centered on each fiber, so the percentage of the material

volume falling within the integration radius is Crro 2. Upon eliminating C between

the two equations, one finds that

0 r (A .9)

a

Although not all of the fluid parcels are counted, a number of parcels are counted

more than once to make up the difference. The resulting volume is presumed to be

a good representative of the fluid.

The value of <F > is now used to determine the average sound speed in the

pores. The ideal gas law is written in modified form using spatial average values as

<p> = <p>R<T> , (A.10)

* . where R is the difference of specific heats c -c This equation can be written as I
p v

p0  < p>exp(jwt) +<p>1 exp~jwt)) R (To <T>exp(jcot)), (A. 11)
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where the total density has been expanded as were the total pressure and

temperature. The "ambient" terms cancel out (po= PORTO) and we neglect the

second order term. The result is

<p> R(<P>T + po<T>) (A.12)

Since the expression for <T> is already known, we substitute it into Eq. (A.12) to

find

RT o
<P> I + R/c (-<F>) (A.13)

p

We define the average sound speed <c> as d<p>/d<p>. Since the term in brackets

in Eq. (A.12) is simply a constant, the differentiation is simple and <c> is clearly

c

o 0 , (A.14)
V1 + (Y-I)<F>

where 'Y=1.4 (for air) is the ratio of specific heats c pC . This is nearly the result

Iobtained by Kuntz; the only difference is the choice of integration radius. A

general discussion of the results of this equation has already been given in

Chapter 2, B.4. 0

In this analysis it is assumed that the external boundary layers of adjacent

fibers do not interact. At very low frequencies, however, the boundary layers

become very large. In this case the temperature solution, on which the calculation

for <c> is based, is no longer valid. We define a criterion frequency, below which

the calculated value from Eq. (A.14) cannot be trusted, as the frequency at which

the boundary layers of the fibers are predicted to intersect the centers of adjacent
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fibers. The fiber radius a is usually known for a given material; for Kevlar it is

6 i0-6 m. The expression for 6 has been given previously and is 2cjw where

52o=2.2 . 10- m /sec is the thermal diffusivity of air under standard conditions. To

find the inter-fiber spacing, we return to Eq. (A.8), where the average number of

fibers per unit area,4IC, is defined. The inter-fiber spacing is simply I/.r-, the

"distance per fiber",

s = . (A.15)

Our criterion can be written as s=a+6. We first solve for the critical 6 at which the 5

criterion is reached,

j6 =(a I~~ (A.16)

We then solve for the angular frequency

2 a

a2

and the physical frequency fth below which the solution is inaccurate,

C1
fth 2- 2 (A.17)

7ra 12

The actual sound speed in the pores is expected to be closer to isothermal than

would be calculated from Eq. (A.13) for frequencies below fth" For the three

porosities of Kevlar used in our experiments, the frequencies are

148
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.=.98 1462Hz , 

S =.96 3147 Hz ,and

Q =.94 5002 Hz

Figure A-I is included for the reader's convenience and is merely a reprint of

Fig. 2-2. It shows that the sound speed tends towards the isothermal value in the

middle of the audio band. The actual sound speed value is, however, closer to the

isothermal value than predicted by Eq. (A.14) for frequencies below fth* Moreover,

at high intensity the sound speed is closer to isothermal for all frequencies because

of turbulent mixing in the fluid. Since we are most interested in measurements

taken below fth and above 135 dB, we are justified in assuming the sound speed to

have the isothermal value.

1

0

0
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0

Appendix B

RELATIONS FOR QUADRATIC RESISTIVITY

2

The quadratic resistivity function r=rl +I u was not used in the bulk of

this investigation because the r I+r 2usgn(u) model was observed to fit the static 6

flow resistivity data better. The two models, however, closely approximate one

another for most of the flow velocities used in the static flow resistivity

measurements. This is to be expected, since both curves are intended to mimic the •

same set of data. Figure B-1 shows corrected measured resistivity data and the

fitted curves for the two resistivity models. This figure is the same as Fig. 2-1 and

is presented here for the convenience of the reader. The values of the two 0

resistivity functions are close over the measured range. However, the two curves

rapidly diverge above this range. Table B-I gives the fitted values of r1 and r3 and

the ratio of the mean-squared errors for the seven samples tested in this study.

Table B- I

r I  r 3

Sample S2 (raylfm) (raylsec 2/m ) MSE ratio

1 0.94 51007 4260 1.04

2 0.98 11214 1302 1.86 0

3 0.96 30700 4195 1.18

4 0.94 53031 8839 1.42

5 0.96 29497 4291 1.38

6 0.94 54394 6995 1.40

7 0.96 29727 3393 1.70
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The quadratic resistivity model has one definite advantage: the resulting

cubic nonlinear term in the wave equation lends itself more readily to analytical

study than the corresponding u sgn(u) term. We therefore present the following

results in preparation for a planned perturbation solution for a high intensity sound

field in a lined duct.

The Helmholtz relations based on the quadratic resistivity model have the

cubic nonlinearity form 0

VI + jqn -nR 3E  v q n p q
n + Vn 2q E VpVq n-p-q , (B.1)

p q S

2where R3 =r3 c powo s2. If the harmonics of the signal are assumed to have a

negligible effect on the fundamental, we assume that only V I and VI* are important

terms in the convolution. Equation (B.l) becomes

+ jqlV I  2 (V * + V V) + V(VIV1 ) (B.2.a)

qq1

which reduces to

3f2R 3  .

V1 + jqlVl = - 2 VIVIV1  (B.2.b)I ~2qI  I

This equation can be written in A, o notation (see Chapter 3) as

S

32R A 3  •

A'1 + j(ql - 'vI )A - 3I (B.3)
2, 4
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Once again the real and imaginary parts separate to give

A't + qliA1  -~K qj A (B.4)

and

q -r0I,-K 3 q, iA, 2  (B.5)

where

K3-3R 3  (B.6)

8 1f + R?

The solutions of this equation are similar in form to the ones generated for the other

model in Chapter 3.

A1 () A A(0) exp(-q 1 ix)(B)

V I'( - exp(-2q1 ~c))

2

where r3 =KA(O

= ~ 2 (B.8)

2*
Z, q, jK 3 Alq1  (B.9)

Oz1 =tan -1q 11 + K 3 qr A ) (B.10)0

I 1 (1q1!2(l +K 3A' I 2R IK 3 A,) (B.lla)
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which can be approximated by S

1 I Il-qh110 + K A 2 (B. I Ib)

C q1  Kqli1 2 -- 2q 1 iQ1 C3 exi)(- 2q 1 ) I i (B. 12)

wher [r + 3 Q12 + (I - C 3 exp-2q1 x)) 2where2

3 1 + QF 

There is very little quantitative difference between the solutions of these

expressions and those derived in Chapter 3 if the particle velocity amplitude lies in

a range where the resistivity functions have similar values. As an example, the

velocity at which the two curves cross in Fig. B-1 is 1.45 m/sec. Above this

velocity the value of the resistivity function for the quadratic model exceeds that

for the sgn(u) model, and the resistivity curves rapidly diverge for high velocities.

For a I kHz tone in S2 =0.96 batted Kevlar 29, a 1.45 m/sec particle velocity

corresponds to an SPL of 153.9 dB. Solutions of these equations for signals weaker

than 153.9 dB (in this particular case) are therefore expected to be nearly equivalent

to those in Chapter 3.

The numerical solution of Eq. (B.) involves a mere two line code change

in the existing computer program (see Appendix C). The successive approximation

for the harmonic impedances is less stable in the quadratic resistivity case because

of the higher power of u involved. The successive approximation algorithm may be

unable to converge for high intensity signals, * which case the propagation curves

are never generated. It turns out, however, that the algorithm is stable for virtually
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all boundary conditions that do not exceed the aforementioned amplitude limit.

Figure B-2 contains a comparison of predicted and measured harmonic amplitudes. .

The data plotted here are the same as contained in Fig. 4-12. Since the solutions
2.

for the two models are nearly equivalent we have no qualms about using r3 u in

place of r 2 u sgn(u) within the stated restrictions on amplitude.
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impedances has been observed to be less stable in PRPKRV3 than in its predecessor S

and, as a result, the algorithm may never converge and the solution may never be

executed. The limits of the algorithm stability are discussed briefly in Appendix B.

The computer code contains a running commentary on its function which

will, it is hoped, help the user understand the operation of this program.
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Appendix C

COMPUTER PROGRAM

Computer program PRPKRV2 is a FORTRAN 5 program which solves
U

Eq. (3.29) as an initial value problem. A resistivity function of the form

r=rI+r 2 usgn(u) is assumed. The heart of the program is the IMSL routine DGEAR,

which solves systems of differential equations using a 12th order Adams predictor-

corrector method, also known as Gear's method. The routine is adaptable to a wide

variety of problems and is particularly designed to solve stiff equations with

unstable solutions. Fast Fourier transform and plotting routines which were written

at Applied Research Laboratories, The University of Texas at Austin, were used

extensively in this program.

The calculation retains up to 32 harmonics and accepts inputs of SPL and

phase for as many. The user must also supply the values of rI and r 2, the

fundamental frequency, and the porosity Q. Hardcopy output is provided which gives

the dimensionless coefficients R and R2 , the initial dimensionless impedance

magnitudes for the first six harmonics, and the predicted SPL of the first five

harmonics out to 20 cm beyond the effective origin in cm steps. A plot of the

SPL predictions is also supplied, and the user has the option of overlaying measured

data for comparison with predictions.

The program PRPKRV3, which uses the resistivity relation r=rI+r 3 u2

differs from PRPKRV2 in only two places. These are marked in the code and the

replacement lines are provided. The iterative approximation for the initial

*OV"' S,1
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